资源描述:
《2011年陕西省高考理科数学试题含答案word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2011年普通高等学校招生全国统一考试(陕西卷)数学(理工农医类)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.设是向量,命题“若,则∣∣=∣∣”的逆命题是()(A)若,则∣∣∣∣(B)若,则∣∣∣∣(C)若∣∣∣∣,则∣∣∣∣(D)若∣∣=∣∣,则=-2.设抛物线的顶点在原点,准线方程为,则抛物线的方程是()(A)(B)(C)(D)3.设函数满足,则的图像可能是()4.(x∈R展开式中的常数项是()(A)-20(B)-15(C)15(D)205.某几何体的三视图如图所示,则它的体积是()(A)(B)
2、(C)8-2π(D)6.函数f(x)=—cosx在[0,+∞)内()17.没有零点(B)有且仅有一个零点(C)有且仅有两个零点(D)有无穷多个零点15.设集合M={y
3、x—x
4、,x∈R},N={x
5、
6、x—
7、<,i为虚数单位,x∈R},则M∩N为()(A)(0,1)(B)(0,1](C)[0,1)(D)[0,1]16.右图中,,,为某次考试三个评阅人对同一道题的独立评分,P为该题的最终得分。当=6,=9,p=8.5时,等于()(A)11(B)10(C)8(D)79.设(,),(,),…,(,)是变量和的个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(
8、如图),以下结论中正确的是【D】(A)和的相关系数为直线的斜率(B)和的相关系数在0到1之间(C)当为偶数时,分布在两侧的样本点的个数一定相同(D)直线过点10.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是【D】(A)(B)(C)(D)11.设若,则=112.设,一元二次方程有正数根的充要条件是=3或413.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49……照此规律,第个等式为。14.植树节某班20名同学在一段直线
9、公路一侧植树,每人植一棵,相邻两棵树相距10米。开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为2000(米)。15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若关于的不等式存在实数解,则实数的取值范围是。B.(几何证明选做题)如图,,且,则。C.(坐标系与参数方程选做题)直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,设点A,B分别在曲线(为参数)和曲线上,则的最小值为3。三、解答题:解答写出文字说明、证明过程或演算步骤(本大题共6小题,共
10、75分)。16.(本小题满分12分)如图,在中,是上的高,沿把折起,使。(Ⅰ)证明:平面ADB ⊥平面BDC;(Ⅱ )设E为BC的中点,求与 夹角的余弦值。解(Ⅰ)∵折起前AD是BC边上的高,∴ 当Δ ABD折起后,AD⊥DC,AD⊥DB,又DBDC=D,∴AD⊥平面BDC,∵AD平面平面BDC.(Ⅱ )由∠ BDC=及(Ⅰ)知DA,DB,DC两两垂直,不防设=1,以D为坐标原点,以,,所在直线轴建立如图所示的空间直角坐标系,易得D(0,0,0),B(1,0,0),C(0,3,0),A(0,0,),E(,,0),=,=(1,0,0,),与夹角的余弦值为<,>=
11、.17.(本小题满分12分)如图,设P是圆上的动点,点D是P在x轴上的摄影,M为PD上一点,且(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度解:(Ⅰ)设M的坐标为(x,y)P的坐标为(xp,yp)由已知xp=x∵ P在圆上, ∴ ,即C的方程为(Ⅱ)过点(3,0)且斜率为的直线方程为,设直线与C的交点为将直线方程代入C的方程,得即 ∴ ∴ 线段AB的长度为注:求AB长度时,利用韦达定理或弦长公式求得正确结果,同样得分。18.(本小题满分12分)叙述并证明余弦定理。解余弦定理:三角形任何一边的平方
12、等于其他两边平方的和减去这两边与他们夹角的余弦之积的两倍。或:在ABC中,a,b,c为A,B,C的对边,有证法一如图即同理可证证法二已知ABC中A,B,C所对边分别为a,b,c,以A为原点,AB所在直线为x轴,建立直角坐标系,则,同理可证19.(本小题满分12分)如图,从点P1(0,0)作x轴的垂线交于曲线y=ex于点Q1(0,1),曲线在Q1点处的切线与x轴交与点P2。再从P2作x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1,QI;P2,Q2…Pn,Qn,记点的坐标为(,0)(k=1,2,…,n)。(Ⅰ)试求与的关系(2≤k≤n);( Ⅱ)求解(
13、Ⅰ)设,由得点处切线方程