欢迎来到天天文库
浏览记录
ID:8720245
大小:279.00 KB
页数:6页
时间:2018-04-05
《2013广东省高考数学试卷解析(理)a卷高三》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、绝密★启用前试卷类型:A2013年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1.答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上。用2B铅笔讲试卷类型(A)填涂在答题卡相应的位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来
2、的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。漏涂、错涂、多涂的,答案无效。5.考生必须保持答题卡的整洁,考试结束后,将试题与答题卡一并交回。参考公式:台体的体积公式V=(S1+S2+)h,其中S1,S2分别表示台体的上、下底面积,h表示台体的高。一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x∣x2+2x=0,x∈R},N={x∣x2-2x=0,x∈R},则M∪N=A.{0}B.{0,2}C.{-2,0}D{-
3、2,0,2}2.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是A.4B.3C.2D.13.若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是A.(2,4)B.(2,-4)C.(4,-2)D(4,2)4.已知离散型随机变量X的分布列为XXP123P则X的数学期望E(X)=A.B.2C.D35.某四棱太的三视图如图1所示,则该四棱台的体积是A.4B.C.D.66.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A.若α⊥β,mα,nβ,则m⊥nB.若α∥β,mα,nβ,则m∥nC.若m⊥n,mα,nβ,则α⊥βD.若mα,
4、m∥n,n∥β,则α⊥β7.已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是A.=1B.=1C.=1D.=18.设整数n≥4,集合X={1,2,3……,n}。令集合S={(x,y,z)
5、x,y,z∈X,且三条件x6、题)9.不等式x2+x-2<0的解集为。10.若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k=。11.执行如图2所示的程序框图,若输入n的值为4,则输出s的值为。12,在等差数列{an}中,已知a3+a8=10,则3a5+a7=___13.给定区域:.令点集T=7、(x0,y0)∈D8、x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点,则T中的点共确定____条不同的直线。(二)选做题(14-15题,考生只能从中选做一题)14(坐标系与参数方程选做题)已知曲线C的参数方程为(t为参数),C在点(1,1)处的切线为L,一座标原点为极点,x轴的正半轴为极轴建立9、极坐标,则L的极坐标方程为_______.15.(几何证明选讲选做题)如图3,AB是圆O的直径,点C在圆O上,延长BC到D是BC=CD,过C作圆O的切线交AD于E。若AB=6,ED=2,则BC=______.三、解答题:本大题共6小题,满分80分,解答需写出文字说明。证明过程和演算步骤。16.(本小题满分12分)已知函数f(x)=cos(x-),XER。(1)求f(-)的值;(2)若cosθ=,θE(,2π),求f(2θ+)。17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数。(1)根据茎叶图计算样本均值;(110、)日加工零件个数大于样本均值的工人为优秀工人。根据茎叶图推断该车间12名工人中有几名优秀工人?(2)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率18(本小题满分4分)如图5,在等腰直角三角形ABC中,∠A=900BC=6,D,E分别是AC,AB上的点,CD=BE=,O为BC的中点.将△ADE沿DE折起,得到如图6所示的四棱椎A’-BCDE,其中A’O=?3(1)证明:A’O⊥平面BCDE;(2)求二面角A’-CD-B的平
6、题)9.不等式x2+x-2<0的解集为。10.若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k=。11.执行如图2所示的程序框图,若输入n的值为4,则输出s的值为。12,在等差数列{an}中,已知a3+a8=10,则3a5+a7=___13.给定区域:.令点集T=
7、(x0,y0)∈D
8、x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点,则T中的点共确定____条不同的直线。(二)选做题(14-15题,考生只能从中选做一题)14(坐标系与参数方程选做题)已知曲线C的参数方程为(t为参数),C在点(1,1)处的切线为L,一座标原点为极点,x轴的正半轴为极轴建立
9、极坐标,则L的极坐标方程为_______.15.(几何证明选讲选做题)如图3,AB是圆O的直径,点C在圆O上,延长BC到D是BC=CD,过C作圆O的切线交AD于E。若AB=6,ED=2,则BC=______.三、解答题:本大题共6小题,满分80分,解答需写出文字说明。证明过程和演算步骤。16.(本小题满分12分)已知函数f(x)=cos(x-),XER。(1)求f(-)的值;(2)若cosθ=,θE(,2π),求f(2θ+)。17.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图4所示,其中茎为十位数,叶为个位数。(1)根据茎叶图计算样本均值;(1
10、)日加工零件个数大于样本均值的工人为优秀工人。根据茎叶图推断该车间12名工人中有几名优秀工人?(2)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率18(本小题满分4分)如图5,在等腰直角三角形ABC中,∠A=900BC=6,D,E分别是AC,AB上的点,CD=BE=,O为BC的中点.将△ADE沿DE折起,得到如图6所示的四棱椎A’-BCDE,其中A’O=?3(1)证明:A’O⊥平面BCDE;(2)求二面角A’-CD-B的平
此文档下载收益归作者所有