欢迎来到天天文库
浏览记录
ID:8717992
大小:1.48 MB
页数:11页
时间:2018-04-05
《2011年北京市中考数学试卷(含答案及考点分析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、内部使用用毕收回2011年北京市高级中等学校招生考试数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、选择题(本题共32分,每小题4分)题号12345678答案DCDBABAB二、填空题(本题共16分,每小题4分)题号9101112答案8圆柱0151三、解答题(本题共30分,每小题5分)13、解:===.14、解:去括号,得移项,得合
2、并,得解得所以原不等式的解集是.15、解:==∵∴∴原式==0.ACBDFE16、证明:∵BE∥DF,∴∠ABE=∠D.∠ABE=∠DAB=FD∠A=∠F在△ABE和△FDC中,∴△ABE≌△FDC.∴AE=FC.17、解(1)∵A(-1,n)在一次函数的图象上,AO11-1∴n=×()=2.∴点A的坐标为(-1,2).∵点A在反比例函数的图象上,∴.∴反比例函数的解析式为.(2)点P的坐标为(-2,0)或(0,4).18、解:设小王用自驾车方式上班平均每小时行使x千米.依题意,得解得.经检验,是原方程的解,且符合题意.答;小王用自驾车方式上
3、班平均每小时行使27千米.ABCDE四、解答题19、解:∵∠ACB=90°,DE⊥BC,∴AC∥DE.又∵CE∥AD,∴四边形ACED的是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得.∵D是BC的中点,∴BC=2CD=.在Rt△ABC中,由勾股定理得.∵D是BC的中点,DE⊥BC,∴EB=EC=4.∴四边形ACEB的周长=AC+CE+EB+BA=10+.20、证明:连结AE.∵AB是⊙O的直径,∴∠AEB=90°.AOBCDEFG∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF.∴∠
4、CBF+∠2=90°.即∠ABF=90°.∵AB是⊙O的直径,∴直线BF是⊙O的切线.解:过点C作CG⊥AB于点G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=.∵∠AEB=90°,AB=5.∴BE=AB·sin∠1=.∵AB=AC,∠AEB=90°,∴BC=2BE=.在Rt△ABE中,由勾股定理得.∴sin∠2=,cos∠2=.在Rt△CBG中,可求得GC=4,GB=2.∴AG=3.∵GC∥BF,北京市2006-2010年私人轿车拥有量统计图年份轿车拥有量(万辆)∴△AGC∽△ABF.∴.∴.21、解(1)146×(1+19%)=17
5、3.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图.(3)276××2.7=372.6(万吨)估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.ABCDFEP22、解:△BDE的面积等于1.(1)如图.以AD、BE、CF的长度为三边长的一个三角形是△CFP.(2)以AD、BE、CF的长度为三边长的三角形的面积等于.五、解答题23、解:(1)∵点A、B是二次函数()的图象与轴交点,∴令,即.ABC解得:,.又∵点A在点B左侧且,∴点A的坐标为(-1,0).(2)由(1)可知点B
6、的坐标为(,0)∵二次函数与轴交于点C,∴点C的坐标为(0,-3).∵∠ABC=45°,∴=3.∴m=1.(3)由(2)得,二次函数解析式为.ABCPMN依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,由此可得交点坐标为(-2,5)和(2,-3).得将交点坐标分别代入一次函数解析式中,解得∴一次函数的解析式为.24、(1)证明:如图1.∵AF平分∠BAD,∴∠BAF=∠DAF.ABCEFD图1∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.∴∠DAF=∠CEF,∠BAF=∠F.∴∠CEF=∠F.∴CE=
7、CF.(2)∠BDG=45°.(3)分别连结GB、GE、GC(如图2)∵AB∥DC,∠ABC=120°,ABCFGED图2∴∠ECF=∠ABC=120°.∵FG∥CE且FG=CE,∴四边形CEGF是平行四边形.由(1)得CE=CF,∴□CEGF是菱形.∴EG=EC,∠GCF=∠GCE=∠ECF=60°.∴△ECG是等边三角形.∴EG=CG,①∠GEC=∠EGC=60°.∴∠GEC=∠GCF.∴∠BEG=∠DCG.②由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB.∴AB=BE.在□ABCD中,AB=DC.∴BE=DC.③ABEFDO图1由
8、①②③得△BEG≌△DCG.∴BG=DG,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°.∴∠BDG==60°.25、(1)分别连结AD、DB,则
此文档下载收益归作者所有