欢迎来到天天文库
浏览记录
ID:8667709
大小:127.00 KB
页数:10页
时间:2018-04-04
《图形认识初步复习教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、图形认识初步教学设计教学设计思想:本章的主要内容是线段与角的概念、性质及其大小的比较,平行、垂直的有关的问题,数学是研究现实世界的空间形式与数量关系的一门学科,而平面几何则是研究空间形式的入门与基础。点与直线是平面图形的基本元素,掌握本章内容对于学好后继课程至关重要,为此必须加强几何语言的训练,要注意经常总结对比。教学目标:1.知识与技能直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及
2、运算知识的掌握,能解决一些实际问题。2.过程与方法经历相关内容的归纳、总结,巩固对图形的直观认识,了解图形的分割和组合,探索学习空间与图形的方法;通过实验、操作,提高对图形的认识和动手能力。3.情感、态度与价值观在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.教学重点:立体图形与平面图形的互相转化,及一些重要的概念、性质等。解决方法:通过观察、测量、折叠、模型制作与团设计等活动,发展空间观念,自然就加强了对概念及其性质的理解和掌握。教学难点:建立和发展空间观念;对图形的表示方法,对几何语言的认识与运用。解决办法:通过
3、多实践操作;加强对几何语言的运用。教学方法:引导式。教具准备:投影仪。教学安排:2课时。教学过程:第一课时一、导入回忆一下,这一章我们都学习了哪些知识呢?教师可以先给出本章的知识结构图:(投影仪)(教师先给一段时间思考,同学之间可以相互交流。)二、知识回顾教师提问:本章的主要内容有哪些呢?师:(概述) 本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。在此基础上,认识一些简单的平面图形——直线、射线、线段和角。
4、师:我们来对各个小节的知识回顾一下:第一节:多姿多彩的图形:通过多姿多彩的图形引入几何图形,使我们认识立体图形、平面图形,通过三视图我们可以把立体图形转化为平面图形来研究和处理,也可以把立体图形展开为平面图形;几何体也简称为体,包围体的是面,面面相交为线,线线相交为点;点动成线,线动成面,面动成体,几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。举例:广场礼花在夜空中留下的图形,你是否看到了点动成线?在电视中看到收割机在麦田中收割小麦,你是否看到了线动成面?第二节:1.直线、射线、线段的区别与联系:从图形上看,直线、射线可以看做
5、是线段向两边或一边无限延伸得到的,或者也可以看做射线、线段是直线的一部分;线段有两个端点,射线有一个端点,直线没有端点;线段可以度量,直线、射线不能度量。2.直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;两点的所有连线中,线段最短;简单说:两点之间,线段最短。3.线段中点:把一条线段分成两条相等的线段的点叫线段中点,如图:若点C是线段AB的中点,则有(1)AC=BC=AB或(2)AB=2AC=2BC,反之,若有(1)式或(2)式成立,亦能说明点C是线段AB的中点。4.关于线段的计算:两条线段长度相等,这两条线
6、段称为相等的线段,记作AB=CD,平面几何中线段的计算结果仍为一条线段。即使不知线段具体的长度也可以作计算。例:如图:AB+BC=AC,或说:AC-AB=BC 第三节:1.角的意义:有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图形。2.角的度量:1°=60′ 1′=60″ 1周角=360° 1平角=180° 1直角=90°第四节:1.角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。2.角的
7、平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。如图:OC平分∠AOB,则(1)∠AOC=∠BOC=∠AOB或(2)2∠AOC=2∠BOC=∠AOB。3.有关角的运算:举例说明:如图,∠AOC+∠BOC=∠AOB,∠AOB-∠AOC=∠BOC特殊情况,如果两个角的和等于直角,就说这两个角互为余角,即其中一个是另一个的余角;如果两个角的和等于平角,就说这两个角互为补角,即其中一个是另一个的补角;等角的余角相等,等角的补角相等。第二课时一、例题讲解例1如图3-162所示,讲台上放着一本书,书上放着一个粉笔盒,指出
8、右边三个平面图形分别是左边立体图形的哪个视图。图3—162解:(1)左视图,(2)俯视图,(3)正视图例2(1)如图3-163所示,上面是一些具体的物体,下面是一些立体图形,试找
此文档下载收益归作者所有