高中数学人教b版必修五3.5.2《简单线性规划》word学案2

高中数学人教b版必修五3.5.2《简单线性规划》word学案2

ID:8637613

大小:220.50 KB

页数:8页

时间:2018-04-03

高中数学人教b版必修五3.5.2《简单线性规划》word学案2_第1页
高中数学人教b版必修五3.5.2《简单线性规划》word学案2_第2页
高中数学人教b版必修五3.5.2《简单线性规划》word学案2_第3页
高中数学人教b版必修五3.5.2《简单线性规划》word学案2_第4页
高中数学人教b版必修五3.5.2《简单线性规划》word学案2_第5页
资源描述:

《高中数学人教b版必修五3.5.2《简单线性规划》word学案2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.5.2 简单线性规划(二)自主学习知识梳理1.用图解法解线性规划问题的步骤:(1)分析并将已知数据列出表格;(2)确定线性约束条件;(3)确定线性目标函数;(4)画出可行域;(5)利用线性目标函数(直线)求出最优解;根据实际问题的需要,适当调整最优解(如整数解等).2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.3.线性规划实质上是“数形结合”思想

2、的一种体现,即将最值问题利用图形直观、形象、简便地寻找出来.自主探究结合下面的具体问题想一想,在什么情况下,目标函数的最优解可能有无数多个?在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z=x+ay取得最小值的最优解有无数个,则a的一个可能值为(  )A.-3B.3C.-1D.1对点讲练知识点一 实际应用中的最优解问题例1 某家具厂有方木料90m3,五合板600m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1m3,五合板2m2,生产每个书橱需要方木料0.2m3,五合板1m2,出售一张

3、方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?总结 利用图解法解决线性规划实际问题,要注意合理利用表格,处理繁杂的数据;另一方面约束条件要注意实际问题的要求,如果要求整点,则用逐步平移法验证.变式训练1 某工厂有甲、乙两种产品,按计划每天各生产不少于15吨,已知生产甲产品1吨需煤9吨,电力4千瓦,劳动力3个(按工作日计算);生产乙产品1吨需煤4吨,电力5千瓦,劳动力10个;甲产品每吨价7万元,乙产

4、品每吨价12万元;但每天用煤量不得超过300吨,电力不得超过200千瓦,劳动力只有300个,当每天生产甲产品________吨,乙产品______吨时,既能保证完成生产任务,又能使工厂每天的利润最大.知识点二 实际应用中的最优整数解问题例2 要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:规模类型钢板类型A规格B规格C规格第一种钢板211第二种钢板123今需要A、B、C三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张

5、数最少?总结 在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等)而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证求最优整数解,或者运用平移直线求最优整数解.最优整数解有时并非只有一个,很可能是许多个,应具体情况具体分析.变式训练2 某公司招收男职员x名,女职员y名,x和y需满足约束条件则z=10x+10y的最大值是________.1.解答线性规划的实际应用问题应注意的问题:(1)在线性规划问题的应用中,常常是题中的条件较多,因此认真审题非常重要;(2)线性约束条件中有无等号要依据条件加以判

6、断;(3)结合实际问题,未知数x、y等是否有限制,如x、y为正整数、非负数等;(4)图对解决线性规划问题至关重要,关键步骤基本上是在图上完成的,所以作图应尽可能准确,图上操作尽可能规范.2.当可行域的边界顶点不是整点(横纵坐标均为整数),则它不是最优整数解,此时必须在可行域内该点的附近调整为整点.常用调整方法有:(1)平移直线法:先在可行域内打网格,再描整点,平移直线l,最先经过或最后经过的整点坐标是最优整数解.(2)检验优值法:当可行域内整点个数较少时,也可将整点坐标逐一代入目标函数求值,经比较得出最优解.(3)

7、调整优值法:先求非整点最优解及最优值,再借助不定方程知识调整最优值,最后筛选出最优整数解.课时作业一、选择题1.若实数x,y满足则z=x+2y的最小值是(  )A.0B.C.1D.22.如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值为(  )A.B.C.4D.3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每

8、投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为(  )A.36万元B.31.2万元C.30.4万元D.24万元4.如图所示,目标函数z=kx-y的可行域为四边形OABC,仅点B(3,2)是目标函数的最优解,则k的取值范围为(  )A.B.C.D.二、填空题5.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。