5_三角形内角和定理_练习3

5_三角形内角和定理_练习3

ID:8611461

大小:93.00 KB

页数:7页

时间:2018-04-03

5_三角形内角和定理_练习3_第1页
5_三角形内角和定理_练习3_第2页
5_三角形内角和定理_练习3_第3页
5_三角形内角和定理_练习3_第4页
5_三角形内角和定理_练习3_第5页
资源描述:

《5_三角形内角和定理_练习3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《第七章5 三角形内角和定理》讲解与例题1.三角形内角和定理三角形内角和定理:三角形的内角和等于180°.符号表示:△ABC中,∠A+∠B+∠C=180°.变式:∠A=180°-∠B-∠C.谈重点三角形内角和解读(1)三角形内角和等于180°是三角形的一个重要性质.与三角形的具体形状或种类没有关系,即所有三角形的内角和都等于180°;(2)三角形内角和等于180°是三角形本身固有的一个隐含条件,在有关角的计算或日常生活中应用广泛;(3)利用定理在三角形中已知两角可求第三角,或已知各角的关系求各角;(4)三角形内角和的一个重要结论:直

2、角三角形的两个锐角互余.【例1-1】在一个三角形中,下列说法错误的是(  ).A.可以有一个锐角和一个钝角B.可以有两个锐角C.可以有一个锐角和一个直角D.可以有两个钝角解析:如果一个三角形中有两个钝角,那么该三角形的内角和将大于180°,故D错误.答案:D点技巧三角形中,角知多少任何三角形中,至少有两个锐角,最多有三个锐角,最多有一个钝角,最多有一个直角.【例1-2】已知一个三角形三个内角度数的比是1∶5∶6,则其最大内角的度数为(  ).A.60°B.75°C.90°D.120°解析:已知三角形三个内角的度数之比,可以设一份为k

3、°,则三个内角的度数分别为k°,5k°,6k°.根据三角形的内角和等于180°,列方程k+5k+6k=180,解得k=15.所以最大内角为6k°=90°,应选C.答案:C2.三角形的外角(1)定义:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角.如图所示,∠ACD和∠BCE是△ABC的两个外角,而∠DCE不是三角形的外角.(2)三角形外角的特征三角形的外角特征:①顶点是三角形的一个顶点;②外角的一边是三角形的边;③外角的另一条边是三角形某条边的延长线.(3)三角形外角的实质是一个内角的邻补角,两个角的和等于180°.如上图

4、中,∠ACB+∠ACD=180°.【例2】如图所示,∠1为三角形的外角的是(  ).解析:由三角形外角的定义知,只有D中的∠1才是三角形的外角,故选D.答案:D点评:判断一个角是否是三角形的外角,关键是看它是否满足三角形外角的特征.3.三角形内角和定理的证法在解决几何问题时,当仅用已有条件解决问题比较困难时,常在图形中添加线,构造新的图形,形成新的关系,搭建已知与未知的桥梁,把较困难的问题转化为熟悉的、易解决的问题.这些在原来的图形上添加的线叫辅助线.辅助线通常画成虚线.证明三角形内角和定理的基本思路:想办法把分散的三个角“拼凑”成

5、一个“整体”,即借助于辅助线,结合所学过的知识,达到证明的目的.在证明三角形的内角和定理时,常用的辅助线主要有以下几种:(1)构造平角:利用平行线的性质进行转化(作平行线),让三个内角组成一个平角.如图①和图②.(2)构造同旁内角:如图③,过C点作CM∥AB,利用∠ABC与∠BCM是同旁内角可证.4.三角形内角和定理的运用(1)利用定理求角的度数或证明生活中,三角形、四边形是常见的图形,在解决与角的度数有关的问题时,一般会用到三角形的内角和定理.三角形的内角和定理的运用,主要是利用三角形内角和定理进行计算或证明.常见于求三角形中相关

6、角的度数及证明角的相等关系.计算或证明时,往往与其他的知识相结合,如特殊三角形、余角、高线、角平分线等性质.(2)利用定理判断三角形的形状根据一个三角形的内角情况判断三角形的形状,关键是利用三角形内角和定理求出各个角,再根据各类三角形的性质判断.①若有两个角相等,则可判定为等腰三角形;②若有三个角相等,则可判定为等边三角形;③若有特殊角90°和两个45°,则为等腰直角三角形.若一个三角形根据角来分类,可先求出最大的角.①若最大的内角是钝角,则三角形为钝角三角形;②若最大的角为直角,则三角形为直角三角形;③若最大的角为锐角,则三角形是

7、锐角三角形.【例3】如图所示的四边形是平行四边形,如何利用ABCD证明三角形内角和定理?分析:三角形内角和定理的证明思路是利用平行线的性质进行转化,让三个内角组成一个平角,或利用同旁内角互补来得以证明.证明:连接BD.∵四边形ABCD是平行四边形(已知),∴AD∥BC(平行四边形的定义),∴∠A+∠ABC=180°(两直线平行,同旁内角互补).∠1=∠3(两直线平行,内错角相等).∴∠A+∠1+∠2=∠A+∠2+∠3=180°(等量代换).同理可证∠3+∠4+∠C=180°,即三角形的内角和为180°.点技巧辅助线的作用辅助线起着桥

8、梁的作用,在画辅助线时,注意与原来的线的区别,要画成虚线.【例4-1】若一个三角形三个内角度数的比为2∶3∶4,那么这个三角形是(  ).A.直角三角形   B.锐角三角形C.钝角三角形D.等边三角形解析:∵三角形三个内角度数的比为2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。