《等腰三角形性质》优秀说课设计1

《等腰三角形性质》优秀说课设计1

ID:8609714

大小:170.50 KB

页数:3页

时间:2018-04-03

《等腰三角形性质》优秀说课设计1_第1页
《等腰三角形性质》优秀说课设计1_第2页
《等腰三角形性质》优秀说课设计1_第3页
资源描述:

《《等腰三角形性质》优秀说课设计1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《等腰三角形性质》优秀说课设计一、教材分析1.教材的地位与作用:等腰三角形的性质它是在认识了轴对称性以及了解了全等三角形的判定的基础上进行的。主要学习等腰三角形的“等边对等角”和“等腰三角形的三线合一”本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是今后证明角相等、线段相等及两直线互相垂直的依据,因此本节课具有承上启下的重要作用。2.教学目标:知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。能力目标:从设置问题⇒模型演示⇒自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。[来源:Z&xx&k.C

2、om]情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。3.教学重点与难点重点:等腰三角形两底角相等,等腰三角形三线合一。因为等腰三角形的性质是今后学习线段垂直平分线的基础,也是今后论证角、边相等的重要依据,所以是本节教学的重点。难点:等腰三角形三线合一的推理应用二、教法与学法[来源:学科网]教法:我采用探索发现法完成本节的教学,在教学中以学生参与为主,便于激发学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主

3、动愉快学习,也符合数学教学的直观性和可接受性。[来源:学+科+网][来源:Z,xx,k.Com]学法:在教学中,把重点放在学生如何学这一方面,我认为通过直观演示,得到感性认识,学生在学习中运用发现法,开拓自己的创造性思维,实现由学生自己发现感受“等腰三角形的性质”通过学生自己看、想、议、练等活动,让学生自己主动“发现”几何图形的性质,而不是老师灌输几何图形的性质,这样做有利于活跃学生的思维,帮助他们探本求源,让每位学生都学有价值的数学。二、教学过程:(一)出示教学目标知识目标:了解等腰三角形的性质,会利用等腰三角形的性质,进行简单的推理、判断、计算作用。能力目标:从设置问题

4、⇒模型演示⇒自己动手探究发现等腰三角形的性质,培养学生的观察力、实验推理能力。情感目标:要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作动手中感受几何应用美。[来源:学。科。网Z。X。X。K]通过这些目标让学生明白本节课的重要知识点和自己需要掌握的主要知识,做到有的放矢。(二)直观演示,大胆猜想观察含有等腰三角形图片,让学生从感性上认识等腰三角形,激发学生的兴趣。由学生自己动手折纸游戏,演示等腰三角形轴对称变换,大胆猜测等腰三角形的性质,这种直观的低起点的方式引入新课更能提高学生兴趣,激发他们的求知欲,让每位学生都涌跃参与,领悟数学学习的价值。(二)证明猜想,形成

5、定理。1△ABC中,AB=AC,求证:∠B=∠C思考:1如何证明你的猜想?〔讲述一种证明方法:作顶角的平分线〕[来源:学&科&网Z&X&X&K]2有其它的方法吗?试试看,用不同的方法证明这个结论。[来源:学_科_网Z_X_X_K]让学生4人一组分组合作,在组与组之间合作,通过作辅助线,共同寻找全等三角形,相等的角,相等的边,体现学生组内合作,组与组之间的合作,让学生自己主动证明猜想,同时有也有利于学生对全等三角形的判定的巩固,既运用以旧引新的推理方式,又体现由特殊到一般的思维认识规律。采用这种探索发现的方式,让学生通过对直观图形的观察猜想,实验证明去揭示定理。同时也展示了猜

6、想——证明这一数学认知基本方法。2、交流反馈,共同完成本节重要知识点的证明。通过学生自己折纸,让学生感性上认识等腰三角形性质〔等腰三角形三线合一〕,既锻炼学生的发散思维能力,又可提高学生的动手能力。3、小结:根据等腰三角形的性质填空。[来源:学科网ZXXK](1)如果AB=ACAD是角的平分线那么-----------------------------------(2)如果AB=ACAD⊥BC那么--------------------------------------(3)如果AB=ACBD=CD那么----------------------------------

7、---总结,积累知识点,从理性上认识等腰三角形的性质,形成知识体系。(三)应用举例,强化训练为进一步深化巩固对新知识的理解,使新知识转化成技能,在教学中我遵循由线入深,循序渐进的原则安排以下练习,以求完成教学目标。例1:已知:如图,房屋的顶角∠BAC=100°,过屋顶的立柱AD⊥BC屋橼AB=AC。求顶架上∠B、∠C、∠BAD、∠CAD的度数例2:已知,如图,△ABC中,∠ABC=50°,∠ACB=80°,延长CB至D,使BD=BA,延长BC至E,使CE=CA,连结AD、AE,求∠D、∠E、∠DAE的度数通过这一环

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。