欢迎来到天天文库
浏览记录
ID:8589995
大小:430.00 KB
页数:8页
时间:2018-04-02
《2014秋上海教育版八上第一节《二次根式的概念和性质》word学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、八年级数学学科总计20课时第1课时课题二次根式的概念和性质一、教学目标:1.理解有意义的条件,理解;2.会根据二次根式有意义的条件确定二次根式里被开方数中字母的取值范围.3.根据二次根式的性质把二次根式化为最简二次根式.4.能判定同类二次根式并合并同类二次根式.二、教学重点和难点重点:理解有意义的条件与合并同类二次根式难点:二次根式的化简三、概念回顾:1.二次根式的概念的理解一般地,形如(a≥0)的式子叫做二次根式。(1)二次根式必须含有根号“”,即次数是二次;(2)a可以是数,也可以是代数式,但a必须是非负数或代数式值是非负数;(3)形如b的式子也是二次根式;例:判定下列各式哪些
2、为二次根式?2.二次根式中的约束条件(1)中a≥0,即二次根号内的数或代数式非负;(2)≥0,即二次根式非负(推论:-≤0);(3)含有分母的二次根式的约束条件有两条:①根号内的分式非负;②分母不等于零。例:如果下列各式都为二次根式,求x的取值范围3.二次根式的性质: 性质一:性质二:()2=a(a≥0)反之:a=()2(a≥0)性质三:性质四:例:的平方根是;=四、最简二次根式满足下列条件的二次根式,叫做最简二次根式:(1)被开方数中各因式的指数都为1;(2)被开方数不含分母。化简二次根式的一般过程:(1)存在带分数或绝对值大于1的小数的,将其化成假分数;存在把绝对值小于1的小数
3、的,将其化成分数;(2)把被开方数化成积的形式,即因式分解;(3)化去根号内的分母,即分母有理化;(4)将根号内开的尽方的因数或因式提到外面;最简二次根式的要求可换成:(1)被开方数中不含能开得尽方的因数或因式;(2)被开方数的因数是整数,因式是整式。五、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫同类二次根式。判断几个二次根式是否是同类二次根式的一般过程:(1)化成最简二次根式;(2)判断被开方数是否相同。注意:两个二次根式的被开方数不同,仍有可能是同类二次根式。例1、下列二次根式,那些是同类二次根式:,,,,,例2、把下列根式化为最简二次根
4、式(1)(2).例3、化简:.例4、已知、为实数,且,求的值。例5、当时,化简代数式巩固练习一、填空题1、计算:×=,计算:.2、直接写出结果:,,,,,,,3、.4、.5、.6、.7、.8、在根式、、、、、中,是最简二次根式的是 .9、化最简二次根式= ,= .= ,= ..二、选择题1、下列式子中一定成立的是………………………………………()(A)(B)(C)(D)2、下列式子中一定成立的是………………………………………()(A)(B)(C)(D)3、下列说法正确的是………………………………………………( )(A)是最简二次根式(B)同类二次根
5、式一定是最简二次根式(C)任意两个根式都可以化成同类根式(D)任意两个最简二次根式一定是同类二次根式4、下列根式中是最简二次根式的是…………………………………( )(A)、(B)、(C)、(D)、5、把根式化为最简二次根式是………………( )(A)、(B)、(C)、(D)、6、若x是整数,且有意义,则的值是………………………………………………………………()(A)0或3(B)1或5(C)0或1(D)所有非整数三、计算题11、12、12、 13、14、 15、16、.17、18、(y>0)19、20、21、22、23、三、把下列根式化为最简二次根式1、.
6、 2、. 3、.4、 5、6、能力提高一、填空题:1.当x取时,的值最小,最小值是;当x取时,的值最大,最大值是2.分析下列数据,按规律填空:(第n个数)3.若最简二次根式与是同类二次根式,则x=。4.当x=时,则=。5.如果最简根式与的同类二次根式,则a=,b=二、选择题:1、若有意义,则x能取的最小整数是()A、0B、1C、-1D、-42、把跟号外的因式移到根号内,得()A、B、C、D、3、计算:的值是()A、0B、C、D、或4、已知xy>0,化简二次根式的正确结果为()A、B、C、D、5、对于所有实数a、b,下列等式总能成立的是()A、B、C
7、、D、6、和的大小关系是()A、B、C、D、不能确定三、计算与化简1、2、3、4、四、解答下列各题1、已知x、y为实数,且,化简2、如果的平方根是,且的算术平方根是,求的值。3、已知实数x、y满足,求的值。4、已知△ABC的三边为a、b、c,化简+。思维拓展1、已知,,求的值2、求的值3、已知=47,求的值
此文档下载收益归作者所有