欢迎来到天天文库
浏览记录
ID:8588483
大小:552.50 KB
页数:12页
时间:2018-04-02
《2017春上海教育版数学八下第二十章《一次函数》word复习教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数学第二十章一次函数复习课教案课题一次函数教学目标及重难点教学目标:函数是研究运动变化的重要数学模型,它来源于客观实际,又服务于客观实际,而一次函数又是函数中最简单、最基本的函数,它是学习其他函数的基础,所以理解和掌握一次函数的概念、图象和性质至关重要,应认真掌握.教学重点:理解函数的概念,特别是一次函数和正比例函数的概念,掌握一次函数的图象及性质,会利用待定系数法求一次函数的解析式.利用函数图象解决实际问题,发展数学应用能力,初步体会方程与函数的关系及函数与不等式的关系,从而建立良好的知识联系.教学难点:1.根据题设的条件寻找一次函数关系式,熟练作出一次函数的图象,掌握
2、一次函数的图象和性质,求出一次函数的表达式,会利用函数图象解决实际问题.2.理解一次函数与一元一次方程、一元一次不等式以及二元一次方程组的关系.课前检查作业完成情况:优□良□中□差□建议:教学步骤一.学法指导1.注意从运动变化和联系对应的角度认识函数.2.借助实际问题情境,由具体到抽象地认识函数,通过函数应用举例,体会数学建模思想.3.注重数形结合思想在函数学习中的应用.4.加强前后知识的联系,体会函数观点的统领作用.5.结合课题学习,提高实践意识和综合应用数学知识的能力.二.知识网络结构图一次函数定义:在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,
3、y都有唯一确定的值与其对应,那么x是自变量,y是x的函数函数的三种表示法:列表法、图象法、解析法变量与函数一次函数正比例函数定义:形如y=kx(k≠0)的函数性质:当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小一次函数定义:形如y=kx+b(k,b是常数,k≠0)的函数性质:当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小待定系数法求函数关系式函数与方程(组)、不等式之间的关系:当函数值是一个具体数值时,函数关系式就转化为方程(组):当函数值是一个范围时,函数关系式就转化为不等式;两直线的交点坐标就是二元一次方程组的解一次函数的实际应用三.专
4、题总结及应用一、知识性专题专题1函数自变量的取值范围【专题解读】一般地,求自变量的取值范围时应先建立自变量满足的所有不等式,通过解不等式组下结论.例1函数中,自变量x的取值范围是()A.x≠0B.x≠1C.x≠2D.x≠-2分析由x+2≠0,得x≠-2.故选D.例2函数中,自变量x的取值范围是()A.x≥-1B.-1<x<2C.-1≤x<2D.x<2分析 由得即-1≤x<2.故选C.专题2一次函数的定义【专题解读】一次函数一般形如y=kx+b,其中自变量的次数为1,系数不为0,两者缺一不可.例3在一次函数y=(m-3)xm-1+x+3中,符x≠0,则m的值为.分析由于x≠
5、0,所以当m-1=0,即m=1时,函数关系式为y=x+1.当m-3=0,即m=3时,函数关系式为y=x+3;当m-1=1,即m=2时,函数关系式为y=(m-2)x+3,当m=2时,m-2=0,此时函数不是一次函数.所以m=1或m=3.故填1或3.专题3 一次函数的图象及性质【专题解读】一次函数y=kx+b的图象为一条直线,与坐标轴的交点分别为,(0,b).它的倾斜程度由k决定,b决定该直线与y轴交点的位置.例4已知一次函数的图象经过(2,5)和(-1,-1)两点.(1)画出这个函数的图象;(2)求这个一次函数的解析式.分析已知两点可确定一条直线,运用待定系数法即可求出对
6、应的函数关系式.解:(1)图象如图14-104所示. (2)设函数解析式为y=kx+b,则解得所以函数解析式为y=2x+1. 二、规律方法专题 专题4 一次函数与方程(或方程组或不等式)的关系 【专题解读】 可根据一次函数的图象求出一元一次方程或二元一次方程(组)的解或一元一次不等式的解集,反之,由方程(组)的解也可确定一次函数表达武.例5 如图14-105所示,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是 .分析 由图象知当x>-2时,y=3x+b对应的y值大于y=ax-3对应的y值,或者y=
7、3x+b的图象在x>-2时位于y=ax-3的图象上方.故填x>-2.专题5 一次函数的应用【专题解读】在应用一次函数解决实际问题时,关键是将实际问题转化为数学问题.例6假定拖拉机耕地时,每小时的耗油量是个常最,已知拖拉机耕地2小时油箱中余油28升,耕地3小时油箱中余油22升.(1)写出油箱中余油量Q(升)与工作时间t(小时)之间的函数关系式;(2)画出函数的图象;(3)这台拖拉机工作3小时后,油箱中的油还够拖拉机继续耕地几小时?分析 由两组对应量可求出函数关系式,再画出图象(在自变量取值范围内).解:(1)设函数关系式为Q=k
此文档下载收益归作者所有