欢迎来到天天文库
浏览记录
ID:8582420
大小:135.00 KB
页数:3页
时间:2018-04-02
《2014人教a版数学必修五2.4《等比数列》第2课时教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:2.4.2等比数列(2)主备人:执教者:【学习目标】灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法。【学习重点】等比中项的理解与应用【学习难点】灵活应用等比数列定义、通项公式、性质解决一些相关问题【授课类型】新授课【教具】多媒体、实物投影仪【学习方法】诱思探究法【学习过程】一、复习引入:首先回忆一下上一节课所学主要内容:1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常
2、用字母q表示(q≠0),即:=q(q≠0)2.等比数列的通项公式:,3.{}成等比数列=q(,q≠0)“≠0”是数列{}成等比数列的必要非充分条件4.既是等差又是等比数列的数列:非零常数列二、新课学习:1.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项.即G=±(a,b同号)如果在a与b中间插入一个数G,使a,G,b成等比数列,则,反之,若G=ab,则,即a,G,b成等比数列。∴a,G,b成等比数列G=ab(a·b≠0)个性设计三、例题课本P58例4证明:设数列的首项是,公比为;的首项
3、为,公比为,那么数列的第n项与第n+1项分别为:它是一个与n无关的常数,所以是一个以q1q2为公比的等比数列拓展探究:对于例4中的等比数列{}与{},数列{}也一定是等比数列吗?探究:设数列{}与{}的公比分别为,令,则,所以,数列{}也一定是等比数列。课本P59的练习4已知数列{}是等比数列,(1)是否成立?成立吗?为什么?(2)是否成立?你据此能得到什么结论?是否成立?你又能得到什么结论?结论:2.等比数列的性质:若m+n=p+k,则在等比数列中,m+n=p+q,有什么关系呢?由定义得:,则四、课堂练习:课本P59-60的练习3、
4、5五、课堂小结:1、若m+n=p+q,2、若是项数相同的等比数列,则、{}也是等比数列六、作业布置:课时作业2.4.2课后反思:
此文档下载收益归作者所有