《直线与平面平行的判定》的教学设计

《直线与平面平行的判定》的教学设计

ID:8500953

大小:683.50 KB

页数:6页

时间:2018-03-30

《直线与平面平行的判定》的教学设计_第1页
《直线与平面平行的判定》的教学设计_第2页
《直线与平面平行的判定》的教学设计_第3页
《直线与平面平行的判定》的教学设计_第4页
《直线与平面平行的判定》的教学设计_第5页
资源描述:

《《直线与平面平行的判定》的教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《直线与平面平行的判定》课案麒麟区第八中学浦仕国一、教学背景分析:(一)教材地位与作用直线与平面平行是我们日常生活中经常见到的是立体几何中最重要的知识点之一,《直线与平面平行的判定》是人教版高中《数学》必修②中的第二章第二节的第一课时;是在学生学习线、面位置关系之后学习空间中平行关系的第一条判定定理;也是立体几何学习中的第一条定理;是学生进一步研究空间中平行关系和垂直关系的基础,因此直线与平面平行的判有着非常重要的地位和作用。通过本节课的学习对培养学生的探索能力、归纳能力、逻辑推理能力、空间转化能力和解决问题的能力都有着十分重要的作用。

2、(二)教学重点、难点重点:归纳探究直线与平面平行的判定定理,及定理的应用。难点:归纳探究直线与平面平行的判定定理,找平行关系。(三)学情分析高一学生学习上主动意识不强,自主探究能力和概括能力也有待提高,学生刚开始接触立体几何空间转化能力有待提高。(四)教学目标1、知识目标。①在创设问题情景中,使学生主动探究、直线和平面平行的判定定理。②能运用直线与平面平行的判定定理解决相关问题。2、能力目标。①借助问题情境和多媒体演示培养学生的自主探究能力,和抽象概括能力。②通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力。3、情感目标

3、。营造和谐、轻松的学习氛围,通过学生之间,师生之间的交流、合作和评价达成共识、共享、共进,实现教学相长和共同发展。二、教学方式与方法基于以上的教材分析和学情分析,为了完成确立的目标,所以在教学时设计让学生主动参与式学习,让学生在问题情景中经历知识的形成和发展,通过观察、操作、交流、探索、归纳、论证、反思参与学习,理解和掌握数学知识,学会学习,培养和发展能力,教学上采用了直观教学法、探索式教学法、启发式教学法,讲练结合法和多媒体辅助教学法。三、教学过程设计(一)复习引入问题:回顾直线与平面的位置关系。活动:学生思考举手回答,教师做点评,引

4、导。对直线与平面的三种位置关系的三种语言进行投影,。并指出平行关系是立体几何中重点研究对象之一,今天我们接下来研究直线平面平行所要满足的条件板书课题《直线和平面平行的判定》。设计意图:通过师生互动回忆旧知识,帮助学生巩固旧知识,让学生在体验学习数学的成就感中来学习新知识,营造轻松愉快的学习氛围。(二)感知定理问题1、观察开门与关门,门的两边是什么位置关系.当门绕着一边转动时,此时门转动的一边与门框所在的平面是什么位置关系?问题2、请同学门将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l与桌面所在的平面具有怎样的位置关系?桌面内

5、有与l平行的直线吗?问题3、请大家观看圆柱和圆台的形成过程并回答问题.在旋转过程圆柱、圆台的母线与旋转轴分别有什么位置关系,与图中的轴截面有什么位置关系?问题4、根据以上实例总结在什么条件下一条直线和一个平面平行?平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行.由此得到直线和平面平行的判定定理。设计意图:通过三个情景问题和问题4的设计,使学生通过观察、操作、交流、探索、归纳,经历知识的形成和发展,由此并猜想出线面平行的判定定理。培养学生自主探索问题的能力。(三)解读定理活动:教师提问,从定理中你学到了什么?学生回答,教师

6、加以点评和引导,师生共同完成定理得解读。①定理的三个条件缺一不可;“一线面外、一线面内、两线平行”②判定定理揭示了证明一条直线与平面平行时往往把它转化成证直线与直线平行.直线与平面平行关系直线间平行关系空间问题平面问题③定理简记为:线(面外)线(面内)平行线面平行.设计意图:通过解读定理,加强对定理的认识和理解以及应用定理的能力。(四)应用定理随堂练习:1、在长方体的六个面中,(1)与AB平行的平面是______________;(2)与平行的平面是______________;(3)与AD平行的平面是______________.2、

7、如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.判断AB与平面DCF的位置关系,并说明理由.3、如图,正方体中,P是平面上的一点,现需过点P画一条与平面平行的线,应该怎样完成?活动:学生先思考再做答,教师加以点评或引导,并强调要保证线面平行只要保证这条直线和这个平面内的一条直线平行。设计意图:通过对基础题的练习,巩固直线与平面的判定定理的理解和应用,并使每一个学生获得后续学习的信心。例1.如图,空间四边形ABCD中,E、F分别是AB,AD的中点.求证:EF∥平面BCD.活动:由学生思考后再回答解题思路,然

8、后学生在自己的练习本上书写证明过程,并与投影的正确证明过程相对照,加以更正,教师与此同时强调用线面判定定理证题的书写要求和证题思路。证明:连接BD,∵在△ABD中E、F分别是AB、AD的中点,∴EF∥BD.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。