欢迎来到天天文库
浏览记录
ID:8438542
大小:244.50 KB
页数:9页
时间:2018-03-27
《中考数学二次函数题精选》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、中考数学二次函数大题精选知识考点:会综合运用函数、方程、几何等知识解决与函数有关的综合题以及函数应用问题。精典例题:【例1】如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A、B两点,与轴交于C点,与轴交于D点,OB=,tan∠DOB=。(1)求反比例函数的解析式;(2)设点A的横坐标为,△ABO的面积为,求与之间的函数关系式;并写出自变量的取值范围。(3)当△OCD的面积等于时,试判断过A、B两点的抛物线在轴上截得的线段长能否等于3?如果能,求出此时抛物线的解析式;如果不能,请说明理由。评注:解此
2、题要善于利用反比例函数、一次函数、二次函数以及三角形面积等知识,并注意挖掘问题中的隐含条件。【例2】某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价为每千克元,月销售利润为元,求与之间的函数关系式(不必写出自变量的取值范围);(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000
3、元,销售单价应定为多少?(4)商店要想月销售利润最大,销售单价应定为多少元?最大月销售利润是多少?评注:本题是一道实际生活中经济效益的决策性应用问题,解答时要认真审题,从实际问题中建立二次函数的解析式,然后应用其性质求解。探索与创新:【问题】如图,A(-8,0),B(2,0),以AB的中点P为圆心,AB为直径作⊙P与轴的负半轴交于点C。(1)求经过A、B、C三点的抛物线的解析式;(2)设M为(1)中抛物线的顶点,求顶点M的坐标和直线MC的解析式;(3)判定(2)中的直线MC与⊙P的位置关系,并说明理由;(4)过原点O
4、作直线BC的平行线OG,与(2)中的直线MC交于点G,连结AG,求出G点的坐标,并证明AG⊥MC。评注:这是一道代数、几何横向联系的综合开放题,解这类问题的关键是运用数形结合的思想方法,从数量关系与图形特征两个方面入手来解决。跟踪训练:一、选择题:1、若抛物线的顶点在第二象限,则常数的取值范围是()A、或B、C、D、2、抛物线(>0)与轴交于P,与轴交于A(,0),B(,0)两点,且,若,则的值是()A、B、C、D、3、某商人将进货单价为8元的商品按每件10元出售,每天可销售100件,现在他采用提高售出价,减少进货量
5、的办法增加利润,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销价提高()A、8元或10元B、12元C、8元D、10元二、填空题:1、函数的图像与轴有且只有一个交点,那么的值是,与轴的交点坐标为。2、已知M、N两点关于轴对称,且点M在双曲线上,点N在直线上,设点M(,),则抛物线的顶点坐标为。3、将抛物线绕顶点旋转1800,再沿对称轴平移,得到一条与直线交于点(2,)的新抛物线,新抛物线的解析式为。4、已知抛物线与轴交于A、B两点,顶点为C,连结AC、BC,点A1、A2、A3、…把A
6、C等分,过各分点作轴的平行线,分别交BC于B1、B2、B3、…,线段A1B1、A2B2、A3B3、…、的和为。(用含的式子表示)三、解答题:1、汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”。刹车距离是分析事故的一个重要因素,在一个限速40千米/小时以内的弯道上,甲、乙两车相向而行,发情况不对,同时刹车,但还是相碰了。事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米。查有关资料知:甲种车的刹车距离(米)与车速(千米/小时)之间有下列关系,;乙种车
7、的刹车距离(米)与车速(千米/小时)的关系如图所示。请你就两车的速度方面分析相碰的原因。2、如图,已知直线与轴交于点P(-1,0),与轴所夹的锐角为,县tan=,直线与抛物线交于点A(,2)和点B(-3,)(1)求A、B两点的坐标,并用含的代数式表示和;(2)设关于的方程的两实数根为、,且,,求此时抛物线的解析式;(3)若点Q是由(2)所得的抛物线上一点,且在轴上方,当满足∠AOQ=900时,求点Q的坐标及△AOQ外接圆的面积。3、如图,抛物线经过A、B、C三点,顶点为D,且与轴的另一个交点为E。(1)求抛物线的解析
8、式;(2)求四边形ABDE的面积;(3)△AOB与△BDA是否相似,如果相似,请予以证明;如果不相似,请说明理由。(4)设抛物线的对称轴与轴交于点F,另一条抛物线经过点E(抛物线与抛物线不重合),且顶点为M(,),对称轴与轴交于点G,且以M、G、E为顶点的三角形与以D、E、F为顶点的三角形全等,求、的值(只须写出结果,不必写出解答过程)。4、如
此文档下载收益归作者所有