欢迎来到天天文库
浏览记录
ID:8388207
大小:940.85 KB
页数:13页
时间:2018-03-24
《高中数学《函数的单调性》公开课优秀教学设计一》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.3.1函数的单调性与最大(小)值(第一课时)教学设计一、教学内容解析:(1)教学内容的内涵、数学思想方法、核心与教学重点;本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章3.1节。函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质.函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质.函
2、数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画.函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位.教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大
3、,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数).(2)教学内容的知识类型;在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识.(3)教学内容的上位知识与下位知识;在本课教学内
4、容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识.(4)思维教学资源与价值观教育资源;生活常见数据曲线图例子,能引发观察发现思维;函数f(x)=0.001x+1和函数,能引发提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观.二、教学目标设置:本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为
5、基本依据,以“数学育人”作为根本目标设置。“课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。“课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时)为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下:(1)知识与技能:理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念;能利用图象法直观判断函数的单调性;初步掌握利用函数单调性定义从正反两个角度分析、判断、证明函数单调性.理解函数单调性定义蕴含的不等
6、关系,初步掌握利用作差比较推理证明函数单调性的方法.(2)过程与方法:经历观察发现、归纳类比、抽象概括、符号表示、推理论证等思维过程,提高相应的数学思维能力;探索函数单调性的符号语言表述,体会数形结合、分类讨论、特殊与一般、无限与有限、等价转化等数学思想.(3)情感、态度与价值观:通过观察生活常见数据例子,感受数学的科学价值与应用价值,提高学习数学的兴趣。通过自主学习、小组合作探究,形成独立思考、讨论争辩、合作整理的良好学习模式与氛围.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明的认知过程,形
7、成对后续函数性质的一般研究方法,形成批判性的思维习惯,崇尚数学的理性精神,树立辩证唯物主义世界观.三、学生学情分析:(1)学生已有基础:认知基础:从学生知识最近发展区来看。他们在初中已经接触过函数的单调性,不过那时没有提函数的单调性,而是用体现变量之间依赖关系的文字语言“y随x的增大而增大,y随x的增大而减小”来描述,符合学生的认知规律,同时一次函数、二次函数的图象直观地体现了函数的这一性质.能理解不等关系,理解a>b可以等价转化为a-b>0,a<b可以等价转化为a-
此文档下载收益归作者所有