2023-2024学年高二数学上学期期末模拟考试01(北师大版2019选择性必修一)(全解全析).docx

2023-2024学年高二数学上学期期末模拟考试01(北师大版2019选择性必修一)(全解全析).docx

ID:83614348

大小:1.52 MB

页数:16页

时间:2024-09-03

上传者:老李
2023-2024学年高二数学上学期期末模拟考试01(北师大版2019选择性必修一)(全解全析).docx_第1页
2023-2024学年高二数学上学期期末模拟考试01(北师大版2019选择性必修一)(全解全析).docx_第2页
2023-2024学年高二数学上学期期末模拟考试01(北师大版2019选择性必修一)(全解全析).docx_第3页
2023-2024学年高二数学上学期期末模拟考试01(北师大版2019选择性必修一)(全解全析).docx_第4页
2023-2024学年高二数学上学期期末模拟考试01(北师大版2019选择性必修一)(全解全析).docx_第5页
2023-2024学年高二数学上学期期末模拟考试01(北师大版2019选择性必修一)(全解全析).docx_第6页
2023-2024学年高二数学上学期期末模拟考试01(北师大版2019选择性必修一)(全解全析).docx_第7页
2023-2024学年高二数学上学期期末模拟考试01(北师大版2019选择性必修一)(全解全析).docx_第8页
2023-2024学年高二数学上学期期末模拟考试01(北师大版2019选择性必修一)(全解全析).docx_第9页
2023-2024学年高二数学上学期期末模拟考试01(北师大版2019选择性必修一)(全解全析).docx_第10页
资源描述:

《2023-2024学年高二数学上学期期末模拟考试01(北师大版2019选择性必修一)(全解全析).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

2023-2024学年高二上学期期末模拟考试数学试卷全解全析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知过点的直线的方向向量,则的方程为(    )A.B.C.D.【答案】A【解析】由直线的方向向量可得该直线的斜率为,又直线过点,所以直线方程为,即.故选:A.2.若椭圆与双曲线有相同的焦点,则实数a为(    )A.1B.C.D.【答案】C【解析】由双曲线可知焦点在x轴上,由题意可得:,解得.故选:C.3.已知点在圆C:外,则直线与圆C的位置关系是(    )A.相交B.相切C.相离D.不确定【答案】A【解析】由点在圆外,可得,求得圆心到直线的距离,故直线和圆C相交,故选:A.4.如图所示,空间四边形中,点分别为的中点,则等于(    ) A.B.C.D.【答案】B【解析】因为点分别为的中点,所以,故选:B.5.某次乒乓球单打比赛在甲、乙两人之间进行.比赛采取三局两胜制,即先胜两局的一方获得比赛的胜利,比赛结束.根据以往的数据分析,每局比赛甲胜出的概率都为,比赛不设平局,各局比赛的胜负互不影响.这次比赛甲获胜的概率为(    )A.B.C.D.【答案】D【解析】结合题意:甲队战胜乙队包含两种情况:甲连胜2局,概率为,前两局甲一胜一负,第三局甲胜,概率为,则甲战胜乙的概率为.故选:D.6.已知展开式中的常数项为,且,则(    )(附:若随机变量,则,)A.B.C.D.【答案】B【解析】因为展开式的通项公式为.令,得,所以,又, .故选:B.7.某中学课外活动小组为了研究经济走势,根据该市1999-2021年的GDP(国内生产总值)数据绘制出下面的散点图:  该小组选择了如下2个模型来拟合GDP值y随年份x的变化情况,模型一:;模型二:,下列说法正确的是(    )A.变量y与x负相关B.根据散点图的特征,模型一能更好地拟合GDP值随年份的变化情况C.若选择模型二,的图象一定经过点D.当时,通过模型计算得GDP值为70,实际GDP的值为71,则残差为1【答案】D【解析】对于A,由散点图可知y随年份x的增大而增大,所以变量y与x正相关,所以A错误,对于B,由散点图可知变量y与x的变化趋向于一条曲线,所以模型二能更好地拟合GDP值随年份的变化情况,所以B错误,对于C,若选择模型二:,令,则的图象经过点,所以C错误,对于D,当时,通过模型计算得GDP值为70,实际GDP的值为71,则残差为,所以D正确,故选:D8.如图所示,双曲线与抛物线有公共焦点,过作双曲线一条渐近线的垂线,垂足为点,延长与抛物线相交于点,若,双曲线的离心率为,则(    ) A.B.C.D.【答案】B【解析】根据题意,如图:因为双曲线和抛物线共焦点,故可得,又到的距离,即,又,所以点为线段的中点,则,设点,由抛物线定义知,解得;由可得,则由等面积可知:,解得,则,则,又点在渐近线上,即,即,又,联立得,即,解得,故.故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.对任意实数x,有则下列结论成立的是(    )A.B.C.D. 【答案】BCD【解析】由,当时,,,A选项错误;当时,,即,C选项正确;当时,,即,D选项正确;,由二项式定理,,B选项正确.故选:BCD10.已知直线:,为坐标原点,则(    )A.直线的倾斜角为B.若到直线的距离为,则c=2C.过且与直线平行的直线方程为D.过且与直线垂直的直线方程为【答案】CD【解析】直线可化为:,所以斜率,得倾斜角为,故错误;由点到直线的距离公式得,得,所以,故错误;设与直线平行的直线方程为,因为平行直线方程经过原点,所以,即平行直线方程为,故正确;设与直线垂直的直线方程为,因为垂直直线方程经过原点,所以,即垂直直线方程为,故正确.故选:.11.如图,棱长为2的正方体中,为线段上动点(包括端点).则以下结论正确的为(    ) A.三棱锥体积为定值B.异面直线成角为C.直线与面所成角的正弦值D.当点为中点时,三棱锥的外接球表面积为【答案】ACD【解析】因为,所以四边形为平行四边形,所以,又因为平面,平面,所以平面,又为线段上动点,所以到平面距离为定值,故三棱锥体积为定值,当点与重合时,,故A正确;因为,故与所成角等价于与所成角,为等边三角形,所以异面直线成角为,故B项错误;以方向为轴,方向为轴,方向为轴建立空间直角坐标系,则,,,设平面的法向量为,则,即,令,得,故,设直线与面所成角为,则,故C项正确;当点为中点时,,易得,平面,又平面 ,所以,,平面,所以平面,即平面,,,所以,,的外接圆半径为,故所求问题等价于求以为半径的底面圆,高为的圆柱的外接球表面积,设三棱锥的外接球半径为,则,故三棱锥的外接球表面积为,故D项正确.故选:ACD12.如图所示,一个底面半径为的圆柱被与其底面所成的角为的平面所截,截面是一个椭圆,则(    )A.椭圆的长轴长为4B.椭圆的离心率为C.椭圆的方程可以为D.椭圆上的点到焦点的距离的最小值为【答案】ACD【解析】设椭圆的长半轴长为,椭圆的长半轴长为,半焦距为,由图象可得,∴,又,,∴  ,∴椭圆的长轴长为4,A对,椭圆的离心率为,B错, 圆的方程可以为,C对,椭圆上的点到焦点的距离的最小值为,D对,故选:ACD.三、填空题:本题共4小题,每小题5分,共20分.13.已知直线:,,当时,的值为.【答案】或【分析】由一般式方程下两直线平行公式进行运算并检验即可.【解析】∵:,,∴当时,有,解得或,当时,:,,∴满足题意;当时,:,,∴满足题意.∴当时,的值为或.故答案为:或.14.某学校在甲乙丙三个地区进行新生录取,三个地区的录取比例分别为,,.现从这三个地区等可能抽取一个人,此人被录取的概率是.【答案】【解析】记事件,,表示此人选自甲乙丙三个地区,事件:此人被录取;则,,,,.故答案为:15.某同学收集了具有线性相关关系的两个变量x,y的一组样本数据,经计算得到回归直线方程为,且,,则.【答案】【解析】由题意知,,,因为样本中心点满足回归直线方程,所以.故答案为:. 16.已知双曲线的左、右焦点分别为,,离心率为,为双曲线右支上一点,且满足,则的周长为.【答案】【解析】由题意可得,,,,,为双曲线右支上一点,,又,,则的周长为.故答案为:.  四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知圆(1)若直线过定点,且与圆C相切,求直线的方程;(2)若圆D的半径为3,圆心在直线上,且与圆C外切,求圆D的方程.【答案】(1)或(2)或【解析】(1)圆化为标准方程为,所以圆C的圆心为,半径为①若直线的斜率不存在,即直线为,符合题意.②若直线的斜率存在,设直线的方程为即由题意知,圆心到已知直线的距离等于半径2,所以,即,解得,所以直线方程为综上,所求直线的方程为或(2)依题意,设 又已知圆C的圆心为,半径为2,由两圆外切,可知,所以,解得或所以或,所以所求圆D的方程为或18.(12分)某公司在一次年终总结合上举行抽奖活动,在一个不透明的箱子中放入个红球和个白球(球的取状和大小都相同),抽奖规则如下:从袋中一次性摸出个球,把白球换成红球再全部放回袋中,设此时袋中红球个数为,则每位员工颁发奖金万元.(1)求的分布列与数学期望;(2)若企业有1000名员工,他们为企业贡献的利润近似服从正态分布,为各位员工贡献利润数额的均值,计算结果为万元,为数据的方差,计算结果为万元,为激励为企业做出突出贡献的员工,现决定该笔奖金只有贡献利润大于万元的员工可以获得,且用于奖励的总奖金按抽奖方案所获奖金的数学期望值计算,求获奖员工的人数及每人可以获得奖金的平均数值(保留到整数).参考数据:若随机变量服从正态分布,则,.【答案】(1)分布列见解析,;(2)人,万元【解析】(1)依题意可得的可能取值为,,,,则,,,,∴的分布列为:3456∴.(2)由(1)可知给员工颁发奖金的总数为(万元),设每位职工为企业的贡献利润数额为,则, 所以获得奖金的职工数约为(人),则获奖员工可以获得奖金的平均数值为(万元).19.(12分)2023年,5月18日至19日,中国-中亚峰会在陕西省西安市举办.多家外媒积极评价,认为这次峰会非常重要,中亚国家正在深化合作,共同致力于实现各国人民和平与繁荣.报道中指出“中国-中亚峰会致力于发展新能源绿色经济,符合中亚国家共同利益.”新能源汽车、电动汽车是重要的战略新兴产业,为了解某一地区电动汽车销售情况,一机构根据统计数据,得到表格如下:月份6月7月8月9月10月月份代码12345产值(亿元)1620233140(1)求电动汽车产值(亿元)关于(月份)的线性回归方程;(2)该机构随机调查了该地区100位购车车主的性别与购车种类,其中购买非电动汽车的男性45人,女性35人;购买电动汽车的男性5人,女性15人.请问是否有95%的把握认为是否购买电动汽车与性别有关.(参考公式如下)0.100.050.012.7063.8416.635①;②;③.【答案】(1);(2)有95%的把握认为是否购买电动汽车与性别有关.【解析】(1)设所求回归直线方程为,则,,, ,,故所求回归直线方程为.(2)根据题意,得2×2列联表如下:性别购买非电动汽车购买电动汽车合计男性45550女性351550合计8020100,故有95%的把握认为是否购买电动汽车与性别有关.20.(12分)设抛物线:的焦点为,,在准线上,的纵坐标为,到点距离为4.(1)求抛物线的方程;(2)过且斜率为2的直线与交于、两点,求的面积【答案】1.(1);(2)【解析】(1)由题意得,,所以,解得或(舍去),所以抛物线的方程为.(2)由(1)可得,,所以直线的方程为,即,设,,联立可得, 所以,,设点到直线的距离为,则,所以.21.(12分)如图,在四棱锥中,平面,,,,,点是的中点.        (1)证明:平面;(2)求直线与平面所成的角的正弦值.【答案】(1)证明见解析;(2)【解析】(1)证明:如图所示:  取中点,连接,则,又因为,所以四边形是平行四边形,因为,,所以四边形是正方形,所以,即是等腰三角形,则,所以,即,因为平面,平面,所以,又因为平面,,所以平面.(2)(2)因为平面,平面,所以,.又因为四边形是正方形,所以,如图,以为正交基底建立空间直角坐标系,   则,,,,所以,,,设平面的一个法向量为,则,令,则.设直线与平面所成的角为,,所以,所以直线与平面所成的角的正弦值为.22.(12分)若双曲线的一个焦点是,且离心率为2.(1)求双曲线的方程;(2)设过焦点的直线与双曲线的右支相交于两点(不重合),①求直线的倾斜角的取值范围;②在轴上是否存在定点,使得直线和的斜率之积为常数,若存在,求出的坐标,若不存在,请说明理由.【答案】(1)(2)①②存在,的坐标为【解析】(1)由题意,,又,则,,所以,双曲线的方程为. (2)①(i)当直线斜率存在时,设直线:,,,联立,整理得:,由题得:解得或,此时,直线的倾斜角的范围为.(ii)当直线斜率不存在时,直线的倾斜角为.综上可知,直线的倾斜角的范围为.②(i)当直线斜率存在时,设直线和的斜率之积,,由(2)①得:,又,得:,上对于任意的都成立,所以, 解得:或,即当坐标为时,;当坐标为时,.(ii)当直线斜率不存在时,此时,.当坐标为时,;当坐标为时,.综上所述,存在点,使得直线和的斜率之积为常数.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭