妙解3类高考

妙解3类高考

ID:83468999

大小:17.06 MB

页数:178页

时间:2023-06-28

上传者:无敌小子
妙解3类高考_第1页
妙解3类高考_第2页
妙解3类高考_第3页
妙解3类高考_第4页
妙解3类高考_第5页
妙解3类高考_第6页
妙解3类高考_第7页
妙解3类高考_第8页
妙解3类高考_第9页
妙解3类高考_第10页
资源描述:

《妙解3类高考》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

03ᝯ3ὃ⚪⌱⚪ஹ⚪Ḅ⚪ᶍᶍI,⌱⚪Ḅ5ᢈᙠ“▲”Ḅὃὃ⌱⚪⌕“”⌕“!”"ᨵ“!”$%&'☢Ḅ⚪ᶇ*ᐙ,Ḅ-./⌕0ᑮ“!”2ᯠ⌕45“6”“6”ᓽ“89ஹ:!;ḕ”.ᵫ>ᦪ@⌱⚪AB⌱ḄCDE/ᙠFGHI“⌱”J⌕ᐙᑖᑭᵨ⚪NO⌱⚗QR☢STḄUVWXYZ[ᑏ⚪]^_`⚪aḄᐹcᱯeᮣgஹ6ᝯஹ!hᙢ⌱jkl!h.mᩭo%pឋᑨsḄtuvᵨwᩖḄpXyz{%vᵨᱯ|}ᑨsḄt2~ᵨj{%vᵨ-jḄt2~ᵨj{>kᔲpḄ⌱⚗F᣸◀k⌱Ḅ{⌱'⌕.Rjj

1ᦪ@pᳮஹpஹjᑣஹDFᵨḄ⚪]zH¡⌱⚗¢£¤H⌱.〉ᵨ¦ᭆ¨ஹឋ©Ḅª᪆ᡈz£®ᓫḄ⚪aᵨj.[ᐺ²1](1)(2015º»ὃ)¼½¾ᔣXa,bÃ,Ä=ÆÇÈ(a—b)_L(3a+2Z>),ᑣa¡ÐḄᜳÒ&()▲ᐔcᐔ-3ᐔA'B2C.D.71᪆:⌱Aᵫ(a-ÝJ_(3a+26)à(a-b>(3a+2b)=0,ᓽ3/“â-2ᡝ=0.ä¦|a|=¥\b\,çீa,bு=3,ᓽ31al2|a||᜜cos6—2íî=0,.♦Æ஺îðíî-os6—2ñ=0.{.cos஺=ᙶä•.•஺<_ᐔ.•.8=£.\3x-b,x<\,“5ஹஹ(2)(2015•÷øὃ)çùᦪDx)=ஹ,.¼^4þÿ%U%=()r>17311B-C-D-842A.解析5生选D-27531---舍-即b/V-角牛〃得-/?=8222-

2J⌱⚪ᨬᵨḄ.〉ᵨḄ⌕!"#$%&'"#Ḅᫀ.)*+,-./012ᵨ⌱⚪Ḅ%34#56⚪7Ḅᱯ.ᵨ9:Ḅ;⌱⚪<=ᙠ?@A6“C”ḄẠFḄᔲᑣIᕡKLᑣML-'┯.OP+Q1.206R□TUVWX/ax+hy+\=0a^0,20YZ)ᑖᙊM7+y2+4x+2y+1=0Ḅᕜ^_I`02+$_2“I26+3Ḅᨬbcd499A.gB.gC.2D.^᪆f⌱BgdXat+ᑖ+1=0YZ)ᑖᙊf+&2+4x+2y+l=0Ḅᕜ^ᡠiᙊj-2,—1ᙠXi+3+1=0Flm2஻+6—1=0./+/I2a—26+3=஺-1q+r6-12+1,mr஻-12+3—12⊤u1,1vX2஺+ᓃ-1=0FxIyzḄ)ᐸᨬbc,12X1+1X1-11ஹ4,,49,+-=~ᡠi2a—26+3Ḅbcd5+1=§.2.2015TUVX/x-yI=0ᱥXCq=2"0>0Ḅᯖ/vCAஹB.W|AB|=6,ᑣpḄcdrV13A&2B.yC.1D.2nx-y-^=0o9᪆f⌱BgdX/ᱥXḄᯖᡠi=§.ὶ=J-2f-3pxy=2px,

3+ᐰ=0.5AX1,yDஹBg>2,ᑣ8+'2=3஻&ᦑ|45|=ᓽ+©+஻=4஻=6,p=3.=>?᣸◀>᣸◀>BCD⌱>ᡈGH>&Iᵨ᣸◀>ḄLMᩩOPQᫀST&ᐹVḄW>PXᵨYᣩᨵᦔḄ]^_ᔜaᜓ⌱Qᫀcd“D⌱”&fᐸhi⚪klmnḄk᡾⚗⌲T᣸◀&rstuvwxy.〉ᵨ|}~=>〉ᵨ>⚪ᡈὅᳲḄ.ᐺ2প2015ὃᑡᦪ8᜻ᦪḄPA.y=yxB.y=|sinx\C.y=cosxD.y=eA—e'᪆⌱D_D,¤=ᓰT©T"Ḅ¦§¨8R,ª-«=0'TF=—^&ᦑ&=/-eT,8᜻ᦪ.s°\&=BḄ¦§¨8{°20},²ᐹᨵ_³ឋ&ᦑy=B8µ᜻µᏔᦪ.y=|sin«ᝰ¸y=cosx8Ꮤᦪ.2ᦪ/U=l—cosxsinxᙠߟᐔ&ᐔḄ¾¿ᜧÁ8

4᪆f⌱CᵫᦪXx)d᜻ᦪ᣸◀B;OWxWn*x)0,᣸◀A;/(x)=—2COS2A+COSA+1,f(x)=0,ᑣCOSX=1ᡈCOSX=-J,ᔠxG[—IT,IT],K&/(x)ᙠ0,ᐔQFḄ᩽ᜧcd/☠¡ᐔ᣸◀D.௃᣸◀〉ᵨ£ឋ¥ᡈ/᧕KḄ⌱⚪.⚪7-Ḅᩩ¨©Iª*ᐜ᪷®¯ᩩ¨ᙠ⌱⚗-±'²³v´µ¶Ḅ~iᔲ£·᪷¸I¯ᩩ¨ᙠ¹b⌱⚗Ḅᑁ±'µ¶»᪵⌲¾¿⌱ᑮ&ᑮ"#Ḅᫀ.ÁvᱯÂஹÃÄᔠÅᵨ⌱⚪Ḅᵨ.IOP+Q1.2015•Æ□TUVÇ஻?஻Éᩩ/ÊḄXaஹ4ɪ/ÊḄ)☢ÌᑡÎ⚪"#ḄrVA.m//a,n//p,Ïa஻᜛ᑣ஻z஻“B.,zz_La,"᜛Ïᑣ,"J_"C.mVa,஻?_!_஻஻U£,ᑣa_L/?V.mUa,nUa,m஻Bn//0,ᑣa஻/

5᪆⌱BA:"7i"ḄÇÈᐵÊ8Ëd&Ì☢ᡈlÎ&Ï.A┯ÑÏB:᪷Ó☢☢ᚖḄឋÕÖ×vwÏC:ᵫ⚪hḄᩩOÙ>ÚÛaJL᜛&&C┯ÑÏD:ÝᨵÞ°i஻lÎß,xyàᡂâ&&D┯Ñ.2.ᙠãTäᙶ᪗Êh&ᦪ1x)=x"(x>0),g(x)=logflXḄ¾¿ÖçP()᪆⌱D᪷Ó_ᦪᦪḄ¾¿ᱯé×ᦪ¾¿T¦êé(1,0),w¦ëa¾¿hḄ_ᦪᦪìí&r¾¿î×ÝᨵCh_ᦪᦪᓫð⌴ò&ᵫóᑨõ²ö÷஺=2,óßùᦪ8ᐸ¾¿8ú¸ᔣîḄüᱥí&ᙠ0,+8)îḄìí²PChḄ¾¿&᣸◀C.ᵫA,B,Dh_ᦪᦪᓫð⌴ÿᡠ0<4<1,4=3■ᦪ/(x)=x1,ᐸD᣸◀A,B,⌱%D.'()ᱯ+(,⚪.(ᡈ⌱⚗)1234⌱ᱯ5678ᐭ:;⚪ᱯ5ᓄᡈ᪀⌼?@⚪AᩩCḄᱯ5ᦪᡈEFGHᑨJ.ᱯ5ᓄ(K“M⚪MN”ḄP⌕Rᶍ⌕TUᙠW᪵Ḅ67YZ[\ᵨᱯ567[^K_ᱯ5ᦪஹᱯ5ᦪᑡஹᱯ5bஹᱯ5cஹᱯ5EFஹᱯ5d.

6〉ᵨg_〉ᵨh⚪ijᨵlmᡈᐹᨵopឋrsḄ⌱%⚪.[ᐺ+3](1)Aᓺ⊤yᜧhᐭ•Ḅᨬᜧ᦮ᦪᑣUᦪᨵ()τHA.[—%]=—[x]B.x+2=[x]nC.[2x]=2[x]D.[x]+x+2=[2x]᪆_⌱Dx=[᣸◀A,B,C.(2)᝞ᙠḄA|ASBᔜᨵocP,Q?@A1P=BQ,4P,Q,C)cḄ☢ᑖᡂᑖᑣᐸ¡¢£¤()BiA.3_1B.2_1C.4_1D.M_1᪆_⌱B:¥QFhᱯ5EF_¥-4,QfB,§?@ᩩC4¥=8஺(=0),ªBC-A1B1GᑣᨵVC-AA^B=VAi-ABC=3['(c¬]ᱯ+(ᐹᨵᓄ®¯°ᳮḄ²ᦔ¤´〉ᵨh⚪ijᨵlmᡈᐹᨵopឋrsḄ⌱%⚪µᵨᱯ+(⌱%⚪⌕TUYc_oᱯ+¶[^ᓫᨵᑭh¹¯°ᳮ

7º»ᙠ¼Ḅᱯ567Yᨵ½ᡈ½Ḅrs¾¿ᑣÀ⌱Áoᱯ+67ÂÃÄᡈᦋᵨᐸÆ'(Ç.ÈcÉÊË1.(2015ᓭÎÏÐ)ÑÒd¤ᦪᑡÓ஻஻Õ?@஻”>0,஻=1,2,3,…ØḄd-5=22஻(஻23),஻21log2஻i+log2a3H---Hlog2஻2஻-1=()A.n(2n-\)B.(n+1)2C.஻2D.(஻—I)?᪆_⌱Câ45஺2஻-5=2஻("23),ᡠä஻=3,8ᐭåciyci\=26,Âäᦪᑡçᦪᑡåèo⚗8,ᑣIog24|+log2©+log245=9=32.fv22.᝞c¥íᙊï+ð=1o▲ᑁḄUoc4íᙊḄó⚔cAஹ⚔cBᑖõöyøஹxøḄùHúûü¾ýhcC,4cPþBC,ACḄùHúýAChcN,BCM,ABDஹEPMCNḄ☢S”PDEḄ☢Sᑣ$:S=()2A.1B.2C.^D.1$᪆:⌱A'()*(4,3,ᑣ-./51=(3—3)2(5—4)=?,S2=£X(4—

8=T,ᡠ5S)S?=1.6789$7:ᦪ<ᔠ7>᪷@⚪BᩩDEFᡠẆHI⚪ḄJKᡈᨵᐵ9ᑭᵨQᦪ9RᡈᦪScde9<ᔠfᩭᑭᵨhiឋkl5mᓫ./opqrsqtᫀ.〉ᵨbw〉ᵨ^$I⚪xyᨵUVW2z⚪Ḅ⚪{.[ᐺ~4]:1>:2015ᓅὃ>᝞9Qᦪ]x>Ḅ9RᢚKAC8,ᑣ'\]ᐔ02log2a+1>Ḅ$:>{1=y=log2:x+1>,EFQᦪg:x>9R᝞9

9+,y=2,ᵫj,Iy=iog2:x+1>,...<ᔠ9R'\]y(x)k)g2(x+l)Ḅ${x|-l2,g(x)Ḅ®ᦪ()A.2B.3C.4D.5$᪆w⌱A¯x>2±g(x)=x-l,XX)=(A—2)2w¯0WxW2±g(x)=3—x,fix)=2-x;¯x<0±g(x)=3—,/(x)=2+x.ᵫQᦪ)=/(x)—g(x)Ḅ®ᦪ³6Z/U)—g(x)=0Ḅ᪷Ḅ®ᦪ.x>2±6Z]ᐗ)g(x)=0-ᓄX2—5x+5=0,ᐸ᪷ᡀ=&º»ᡈx=£«(½¾);

10¯0WxW2±6ZÀ>gx=O-ᓄ2—=3—x,Á$wI——τ+ஹ6¯A<0±6Z]X>—gx=O-ᓄ,+x-1=0,ᐸ᪷x=—Ã'ᡈx=—½¾>.ᡠ5Qᦪy=/x—gxḄ®ᦪ2.QÔÕᙢ×ÃØÙÚ⌱⚪⚪ÛÜᶖÞÁᙠᨵᐵ⌱⚪*Ù9:ᨵᦔ.ᵨÃ⚪I£⌕OᨵᐵᦪḄÃâஹãäXஹåæÃçèé៉ᔲᑣ┯ëḄÃâìmMíî┯ëḄ⌱Ã@▭FIᦪçᔠḄ⚪ᶍ.IÅÆÇÈ1.Qᦪy=|log5|Ḅr2ÉÊb&,`É0,2,ᑣËÌa,ᑗḄÎÏÐ஺ḄᨬÒ`:>33A.2B.yC.3D$᪆w⌱DEFQᦪy=|log|MḄ9R᝞9ᡠÓᵫy=0,$Ôx=l,ᵫy=2,$113ÔÕ=4ᡈᡀ.ᡠ5ËÌ~ḄÎÏÒ஻ḄᨬÒ`i—^='2.2015Î᧡ØÙ>§r2ᙠRÛḄQᦪy:x,¯x£0,2±À=81—Ã1|,ÜÅ

11ÝWḄÞᦪxe[2"-2,2"i-2](஻GN*,Ü஻22),ßᨵÀ)=5à1)áQᦪg(x)=/(x)logdᨵÜâᨵ®ᑣaḄ)`b()A.ফ10]B.[äå]C.(2,10)D.(æজ)[log«4<4,ᔆ._$᪆w⌱D]Õ)Ḅ9R᝞9ᡠÓ᧕Ôë⚪WÔJlog10>2,w24610Õ67ìí/7ᵫ⌱î⚪ïðñòsqḄ⌱⚗$tôÁ◤öZ÷øᨵe⚪{'ùúûüqḄ./â◤Åᐸᦪ`ᱯþ)`ÿ▲〉ḄḄᑨ,.⁚ḕ⚪!".〉ᵨ%&⚪'(☢*᪆,-./ᱯ1234Ḅ⌱⚗!᝞89:ᜧḄ<ᦪḄᨬ1ᡈ@1%ஹ<ᦪBCḄDᓄFG⚪HᵨIJK4⌱⚗.

12xWO,PᐺR5TU”WXFYZ,y\O⊤^Ḅ_☢`aᑣa(d2fgDᓄᑮ1!,Jdk2lmnx+y=aqrMtḄuvᑖ`aḄ☢xWyz37A.PB.1C,4D.2*᪆&⌱C᝞B`aḄ☢xOA8ᣵdm.▢vᑖ☢x,1ᜧ,SAOAB=£><2X2=2.PKT“”Ḅᐵ4ᡠᙠḄᜧ%ᔲᑣ“”ᨵ.⚪Ḅᐵᙠᡠ1¡,aAOBḄ☢x¢ᜧᐸ☢xḄd¤.P¥¦§T1.¨a=log32,b=

132,c=5—ᑣa,b,cḄᜧᐵ®yzA.a^=2-¢a=log32=j^3

14ᡠc$?@A᪵C1ᨵᦔᙢGH'⌱⚪Ḅ1J.Kᶍ2'MN⚪Ḅ4Oᢈ6ᦪRMN⚪S⌕UᑏW@X2⌕UᑏWY:Z[ᳮ]^ᐸ@X_`aᦪbcdஹe

15fgஹ⊤jfkᦪlᨬn.MN⚪Ḅop)qrᑖ"t(eMN⚪ஹu⌱MN⚪ஹᩩwx@yz{ḄMN⚪.'⚪$⌕ᨵᔠᳮᙢᑖ᪆Zᑨ⌕U[ᳮஹ:Ḅ)d,-⌕Uᫀ⊤jcdஹ(᦮.ᔠ[ᳮஹᓄஹ:uaஹcdᙢ'MN⚪Ḅ⌕U.ᦪRMN⚪ᜧuᦪaY:pkᐸa[ᳮY:plZᭆkឋlᑨpḄ⚪$_`ᢥgᑣ78ᑗ¡ḄY:ᡈὅᔠ¤¥¦Ḅ[§Zᑨ.U'MN⚪ḄKᶍa⌕ᙠ“c”ஹ“9”ஹ“”©0ª«.¬ᵨḄ6ᨵ®6ஹᱯ°ᓄ6ஹᦪe@ᔠ6ஹ±²³ᓄ6±.6——®6®6µa⚪¶ᩩwW·ᵨ¸ஹᳮஹ¹fஹឋ±º]»eஹ[ᳮஹ:±]^®Wd@y¼ᵨ½6$⌕ᗐ¿À]ÁÂÃÄÅᙢஹᨵ=ÆᙢÇᵨᮣÉஹnᣩḄ'6.〉ᵨÌtÍ¿Y:pḄ⚪uº]Y:U@X.ÎᐺÐ1J12015•ÒÓHὃlᙠABCÔB=120஺AB=p,4ḄÖ#ᑖ×A/=ØᑣAC=.AnAR'᪆t᝞ÚᙠABDÔᵫÜᳮÝ=.ßàsinDsinZ-ADD

16BDAsinNA£>8=2,NAO8=45஺,.ZBAD=180°-45°-120°=15°.AZBAC=30°,ZC=30°,BC=AB=.ATnrᙠaABCÔᵫÜᳮá^á7$AC=y[G.ᫀtã22%2&äåæç2aèᙊC'⊟=1%஺>஻>0&ḄíஹîᯖðñðçᙠC©òPFJQ&$\PF^2\PFt\,ᑣCḄóô᳛".A22b2'᪆tö"çFJQF2,|PBI=2|PQ|,ᡠø|PF]|=5,|P&I=W-$ᵫèᙊ¸r|PF||Q12AQᓝ|஺/21=u~=2஺ᓽ2஻2=3%42—J&,ᓄn4=Ø0,ᦑóô᳛6=ÿ=.ᫀ.[]⚪ᨬᵨḄᙠᡃ!⌕᪷$⚪

17&Ḅ⌕'ᮣ)ᜐᳮ,-./ὃ1⚪2345⚪678⚪ᢈ:Ḅᮣ);ᵨ<=ᓄ?@AᑮCDEFGHIᙢ'⚪ḄᐵL.MNOPJJFTT1.T2015•ᐲZ[\]^_ᦪa]=2singx+aT—24<14]ḄlmnxopqA,AḄt/n_ᦪvwḄlmpqxczo|ᙶ᪗ᑣT+].᪆•.•42

18ËᨩÍᫀ4¾ÊαÏ?⚪ÐᓄḄ½¾¿⌱ÒÓᔠᩩ¹Ḅា·ᱯÉÊ(ᱯÉ_ᦪஹᱯÉ-ஹᱯÉᦪᑡஹᱯÉ×ØஹᱯÉஹᱯÉஹᱯÉ[§)ÚÛᜐᳮ?@AÜÝ'ḄCÁ.|ÞßᫀḄàIឋᙠᑭᵨãÎ4ä;,Òåᱯæ.〉ᵨé'Êᡈêᜧì§1⚪Ḅ'ᙳ±ᑭᵨᱯÉÊîᐭÀ⌕23ãðñ▲q'CÁóᨵ4ðḄ⚪NqôõឋḄ1⚪ᡈὅᨵ,ðᫀḄ⚪ᑣ½÷øᵨùð'.[ᐺæ2](1)Äᙶ᪗|O,ûᱥt)2=2xnᯖḄtpqAஹBzᑣDA-OB᪆ᵫ⚪3²஺ᐭ•ÿḄḄ▲ᑴᡠᑖḄAஹB,2\11则A2Tk=-X-7223答案-4(2)AD,BEᑖAABCḄ!"|$y=|()|=1,+,-.Ḅᜳ0120°.ᑣ(5•AC=.7᪆)"9ABC:;<0=,ᑣ|>?=@.O+.AB•AC=\AB\|AC|cos60°^^-.9343-2Kᫀ)(

19MNOPQRS⚪ḄUVWXᡈ⚪ᩩ[\]Ḅ^_ᨩaKᫀXb〉ᵨeOḄf\ᩩ[.ghijQ7T1."kᦪᐔYo=sin2R+QCOS2XḄvwᐵyz!x=-gh}ᑣa=.7᪆)ᵫ⚪hḄ>ᨵ7X1+ᐭo=7X1Xo஺o=7Xo஻=-1.Kᫀ)X12.:ᦪᑡgḄd#0,+0,Ḅ49ᡂ:ᦪUᑣS”Ḅ______஻2'஻4ᓝ஻10.⁐+Ḅ+Ḅ137᪆)ᱯᦪᑡ=஻¡¢⚪.2+44+0016,KᫀᔁNO

20[ᐺÛ3]1o2015•Þßàὃoᙠâ☢z0ᙶ᪗æxOy"z!y=2a-kᦪo=X஻|-1ḄvwèᨵXéᑣaḄ.7᪆)'J/kᦪy=|x—1Ḅvw᝞vᡠaîz!y=2a-kᦪy=|x—a|-1ḄvwèᨵXéᦑ2஻=—1,7Q=-Kᫀ)X32okᦪ7UoḄbÎð஺᝞Áñᙠ¿òᦪó,ôhXGQ,÷ᨵx+ze஺+ùr+ko*xoឤᡂþᑣ}kᦪÿxḄᦪ”.ᐔ0ᙠRḄ᜻ᦪᙠx>0ᓻ=24,!4xRḄ“2015ᦪ”ᑣ'ᦪaḄ)*,|x—3஺122஻,4᪆6ᵫ⚪9:;x>0ᐔ<=l—x—ax

21জ;ᦪ,/(X)ḄBC᝞B(1)ᡠFὃ⇋᩽ᜧ*/(—4)=2஺Kx—3஺=2஻:x=5஺.ᡠLM◤OP5a—(஺)=6஺<2015,ᓽ0W஻<ᵬ’ঝ;஻<0ᦪᐔ\)ḄBC᝞B(2)ᡠF/(x)ᦪYx+2015>x,ᡠLOP7(\+2015)Ḅ).]^'ᦪ஺Ḅ)*,(8,2ᧇa᳝ᫀf((-8,ߟ2015)ஹQÃ@ýFþᦪçᔠḄÛÿᙠ⚪ḄᵨᑭᵨḄឋᔠᡠᑮḄ!"#$ὃ&⚪Ḅ'(.*+,ᵨ-.Ḅᐵ0#1+23ᔜ56789:Ḅ;<=>Ḅ?ᐵ@ᑭᵨ9:ḄᐵABC.D?(EFI1.GHᦪ/U)=|k)g2X|1Jᦪ"2,"LM஻?PQR)=/(஻),Xᓻ)ᙠZ>D஻?2,\Ḅᨬᜧ_`2,ᑣn+m=.

224᪆6᪷lᦪ/1x=|log2HḄBCᡠL᪷lᦪBC᧕;2=஻q):ᨬᜧ*ᡠL./1"?2=|log2"/|=2,t4:=£.vwᔠ/1"?=702y:஻=2,ᡠLn+???=1.{ᫀ6I|2x+l|,x

23{ᫀ61¹º»᪀⌼º᪀⌼«¬⚪Ḅy4◤⌕ᑭᵨᩩ±²w³Ḅᱯµឋ᪀⌼·Ḅᦪ¸(᝞᪀⌼ᦪஹ¹¼ᡈB¾)¿ÀÁᓄÃᳮÅÆÇȼÉÊËᩖḄᦪ¸Í⚪:ᑮÁᣩḄ4ÐÑᩭÓÔẠÖ²Ô×¹ºḄØÙ◤⌕¿ÚḄ¹ºᳮÛÜÝÞßᭆáØ᩽ὶãäᔣæç¿èé⍗ᑮÈḄæëÍ⚪Ûìíᮣï᪀⌼ðḄᦪஹᭆ᳛ஹòóᐹõḄᦪ¸ÉÍ⚪ö÷4Ð.[ᐺú4](1)᝞Bᳫ0Ḅ☢ᨵ»A,B,C,D,D4_Lþ☢ABC,ABLBC,DA=AB=BC=.,ᑣᳫ0ḄõØ.4᪆:᝞D4,AB,8C᪀⌼Ḅ᜜ᳫᳫ஺ḄR,ᑣ

24Ḅᓽᳫ஺Ḅᡠ8=4(/+(#+(6)2=2'ᡠR=ᙶᦑᳫ஺Ḅ+,=-=#ᐔ0ᫀ23ᐔ(2)஺=11120]2—7QiQ,b—In.0]3-2()]3'஺=1஺20]4—2014'ᑣb/cḄᜧCᐵEI]—xF᪆2H,*x)=lnx—x,ᑣ(x)=~—1=—^ߟ-O00,ᓽTᦪ./(X)ᙠ(0,1)XYZTᦪ.:1>2012>2013>2014>0a>h>c.0ᫀ2a>b>c[]^_]᪀⌼]`aXYᓄcdeᓄfgᙠF⚪iḄjᵨ◤⌕᪷opqᩩstᡠ⌕FuḄv⚪wx᪀⌼Ḅᔣz{᪀⌼|ḄTᦪஹ~ᡈᦪᑡ|Ḅeᓄ៉Ḅv⚪.⚪ᝯᙢ᪀⌼ᳫḄាḄv⚪᧕ᑮFu.[^]1.஺஺Cᙳ`ᦪCOS2X=4COS2X+Z?COSx+cឤᡂ£ᑣ஺2+஺2+஺2=.F᪆2⚪ឤᡂ£ᡠ¤¥XḄᱯ§¨ᐭ.

25a+b+c=1,HJ=o,ᐔ,C=-1,a—b+c=\tFa=2,/?=0,c=-1.ᦑa2+62+c2=5.0ᫀ:52.ª┦a,}y¬cos?a+cos2^+cos2y=1,®¯tana-tan^-tan/ḄᨬC§F᪆:᝞᪀⌼A8CQ-4[8]GO].AB=a,AD=b,A4j=c,ZCAB=aZCAD=]f{B/ZC\AA]=yᑣcos2a+cos2^+cos2y=1.tu34,—±+஺27c5ᓝ78Ḅ:;<•=>஺²³´஽¶#ᨵtana-tanp-tany=----T•~—2¸2,O¹Oa=b=cRtana-tanp-tanyᨵᨬC§2.0ᫀ22º⌱d⚪ஹ⚪f⚗F

26⌱d⚪ஹ⚪f⚗F(h)±ஹ⌱¼⚪1.½ᔠA={x|l3ᡈÂ<±1},ᡠ4Ã([¿)=334<4}.2.(2015•☘ÆÇ)pqÈ=1±Éᐸim஻Y`ᦪiYÌᦪᓫÎᑣ|஺±3=()A.3B.2C.5D.Caa=l+b,F᪆2⌱D727=1±ᔊ¤஺=l+b+(l—8)i,Àa,6Y`ᦪᡠÑ1+1[1—Z?=0,Fa=2,b—1.ᡠ|a±ᔊ|=|2—i|=(22+(—1)2=C.3.(2015ÒÓÇ)pqᔣÔa=(l,2),b=(x,—4),ªa஻b,Õ(Ix=()A.4B.-4C.2D.-2F᪆2⌱D'a//b,.,--4-2x=0,Fx=-2.4.a,bGR,ᑣ“a'lY“a+b22”Ḅ()A.ᐙᑖ~Ø⌕ᩩsB.Ø⌕~ᐙᑖᩩsC.ᐙ⌕ᩩsD.Ù~ᐙᑖº~Ø⌕ᩩs

27F᪆2⌱Aªᑣᡂ£Oa=0,6=3R¬a+b22,Ýᓃ21~ᡂ£ᓽY“a+b/2”Ḅᐙᑖ~Ø⌕ᩩs.’2',xWO,5.pqTᦪᐔrä=,,,åᑣæᐔ0=2ḄxḄ½ᔠYçä|10g2X|,X>0,A.$42B.{1,4}C.|l,D.11,I,2*,xWO,F᪆2⌱ATᦪᐔ0=]lllogxrl,x>0,OxWOR2'=2,¤x=lçîïä.Ox>0R|log2x|=2,ᓽlog2.t=±2,Fx=4ᡈx=ò.æ,/çxä=2ḄxḄ½ᔠY46.ç2015•óôÇäpqõö᪾᝞ᑣøḄçä/øi/s=si~ZELçùúä|i…2|A.7B.8C.9D.10F᪆2⌱Cᵫõö᪾¤

28S=l,i=3~¬ᩩsS2100,᡻þÿS=1X3=3,i=3+2=5,ᩩSN100,᡻5=3X5=15,i=5+2=7,ᩩS2100,᡻5=15X7=105,i=7+2=9,ᩩS2100,⌨i=9.7.ᵬஹ5ᑖᑮ!"#$%&'"(ᵬஹᙠ&Ḅᑖ+ᫀᐳᨵ/0A.181B.241C.361D.7213᪆5⌱C7ᵬஹ89:&᦮"5'<ᡂ>4"?7@4'ᑖᡂ3Aᑖ"#Aᑖ$%&'"ᐳᨵC51+B"?7@3Aᑖ'ᑖᑮ3"ᨵA91+B"᪷DᑖEFᦪHᳮ"ᑖBḄ1ᦪJC5-A]=36.8.KLᦪa,b/+/W1,ᑣᐵO*Ḅ+Q^-+a+b=0ᨵLᦪ᪷Ḅᭆ᳛T/2x42ᐔ4ᐔ%+XD-5+K3᪆5⌱A••AᦪC%••Za,Aᙠᓫ\ᙊᑁ"ᙊ☢`S=7t,

29a+b=l•.•ᐵOxḄ+Q^-2x+a+b=oᨵLᦪ᪷""/=(&2/&4(“+ef0,ᓽa+஻Wl,⊤jkl▢nAᑖ"ᐸ☢`S'=p+91X1=p+,S'31ᦑᡠtᭆ᳛P=_^_=7+yz-\4Z7T229.uvwxy"&ᑖ=1(40,b>0)Ḅ&ᩩz{y|}yx+3y+l=0ᚖ}"ᑣwxyḄ᳛O()AEB.C.V10D.223᪆5⌱C'•wxy?&=1(஻>0,8>0)Ḅ&ᩩz{y|}y1+3y+l=0ᚖ}"••wxyḄz{y+QJy=±3x,+/=3,/=9/,஺2—஻2=9஻2,"᳛e=§=qT5.

3010.ᦪ0=2x-tanxᙠ/&$ḄkᜧT/0ᐔᐔஹ3᪆5⌱D/&"50ᐵOHZ"J-x0=-2x+tanx=&/2¡&tanᡀ0=&/0"ᡠ£ᦪᐔv0JᑁḄ᜻ᦪ"¦᣸◀B,C:J¬0=&lan>0,°±0=y-tanf+f=^-(2+V3)<0,¦᣸◀A.px+y—2^0,11.<»¼ஹ0"yឋ¾¿ᩩ&xW2,KÁ᪗ᦪz=Ax-yÄᙠZ/0,20ᜐÆᨬÈ"ᑣḄÆÈÊT/0A./—8,—30B./1,+°00C./—3,10D./—1,103᪆5⌱C:ÍÎḄ☢Ï"ᵫZ=AA~y0,=Ó&z,⌕ÕÁ᪗ᦪy=fci-zÄᙠZA/0,20ᜐÆᨬÈ"ᑣ▢nAᑖÏᙠ}y0"=fcr-zḄÙ+""Á᪗ᦪḄÚ᳛ᦇ-3VZV1.

3112.(2015•☘ÝÞß)àᦪ/(x)TᙠRᕜãJ2Ḅᦪ"(äåḄLᦪx,ឤW1,0],)=è25<'"»Kg(x)=/x)—1O&KᙠxC(0,+8)ᨵ(ÄᨵïZ"ᑣaḄÆÈÊJ()A.[3,5JB.[4,6JC.(3,5)D.(4,6)3᪆5⌱C•.•äåḄLᦪx,ឤᨵᐔv)-/(-x)=0,...ᦪ,/(X)TᕜãJ2ḄᏔᦪ"ö50]"_/0)=/ø("1),°g(x)=/(x)-logeᙠxG(0,+8)ᨵ(ÄᨵïZ"¦ᓄJᦪý)|.y=k)goXᙠx6(0,+8)ᨵḄZ"ᦑ:ᦪ/)|>=log/ᙠ(0,+8)Ḅk"ᵫk¦log“3Vl,log5>l;ᦑ3Va<5.aஹ⚪13.ᐳᨵ2000ᔜ!ᵱஹ᝕$ᦪ᝞'⊤)*ᙠᐰ᪥./0

3211$0ᑮ!᝕Ḅᭆ᳛60.19,7ᵨᑖ:0᪵Ḅ<=ᙠᐰ᪥0164ᑣᙠ?!@01..AB᝕373mnᵱ377370PC᪆B•.•ᙠᐰ᪥./011$0ᑮ!᝕Ḅᭆ᳛60.19,.•.F5=0.19,ᓽm=380,ᑣAḄHᦪI373+380+377+370=1500,ᑣ?I2000-1500=500,Jᵨᑖ:0᪵Ḅ<=ᙠᐰ᪥0164ᑣᙠ?!@01^^X64=16.KᫀB1614.᝞MINOPA,CQRSḄTU⌱1WAX☢ZB,஺QRO\]^_ABCDḄᔜ^Ḅ`abᓫdBkmBAB=5,3c=8,CD=3,D4=5,᝞MᡠfgAஹ8ஹCஹ஺]RᐳᙊᑣACḄ`Ikm.C᪆B:AஹBஹCஹ஺]Rᐳᙊᙊᑁj]^_ḄklmIᐔAZB+ZD=7t,...ᵫpqrᳮtuAC2=52+82-2-5-8COSB=89-80COSB,VZB+ZD=n,ᓽcosB=-cos£>,

3334-AC289-AC2tCuAC=7.A—30—-—80~KᫀB715.)*or+y-2=0ᙊICḄᙊ஺-1)2+&—“)2=4A,8QRgABCI^?l_ᑣᦪ஻=.C᪆Bᵫ⚪t*ᙊḄᙊIC(l,a),-=2,ᑣᙊCᑮor+y—2=0ḄTU=7^ABCI^?l_.|4B|=r=2.|A8|=2MA/,2yJ22A)=2,ᓽ/-8a+l=0,Cua=4±Vᔲ.ᫀ:4±\[B16.¢ᦪᑡ¤¥¦§¨:<7,—1,஺2=4,஺4=12,a„—a„-i~i~a-2—a„-j(n—4,5>**")>ᑣ42016nC᪆Bᵫ%—ct-14-ct-2—¥-3,4"+i—”"+¥-1—¥-2,nnQ°±muBa,,+\=2a,,-\—a-ynᓽ஺“+|+¥-3=2¥-1(஻=4,5,…).ᦪᑡ¤¥¦Ḅ᜻ᦪ⚗mᏔᦪ⚗ᙳ᪀ᡂ¹ᦪᑡ"+a=4,ᒹ=12,Ꮤᦪ⚗»¹I8.2ᑣ஻2016=஺2+8(1008-1)=4+8X1007=8060.Kᫀ:8060⌱d⚪ஹ⚪f⚗F(j)

34hஹ⌱d⚪1.2015½¾¿ÀÁJÂᔠA={x|xÄO},gACB=B,ᑣÂᔠBtÅ6bÁA.{1,2}B.{X|A<1}C.{-1,0,1}D.RC᪆B⌱A♦.•ÂᔠA={xk20},gACB=B,+.BQA,ÆÇᜓ⌱KᫀḄ4É⌱⚗Êᨵ{1,2}

353.)*஻zGR,“åᦪ)=2,+%-1ᨵæR”6“åᦪç10gxᙠ(0,+8)ZIêåᦪ”mḄ()A.ᐙᑖìí⌕ᩩïB.í⌕ìᐙᑖᩩïC.ᐙ⌕ᩩïD.ñìᐙᑖòìí⌕ᩩïC᪆B⌱BJåᦪy=«r)=2'+"?—1ᨵæRᑣ/AIVO,m<\,ømW0úåᦪy=10gxᙠ(0,+8)ZIêåᦪìᡂûᓽᐙᑖឋìᡂûJy=log஻ᑁᙠ(0,+8)ZIêåzMᦪᑣOVmVl,ýúåᦪ)B=2"+"?—1ᨵæRᡂûᓽí⌕ឋᡂûᦑ“åᦪ)=2*+"?A1ᨵæR”6“åᦪy=1og஻Kᙠ(0,+8)ZIêåᦪ”Ḅí⌕ìᐙᑖᩩï.4.⚗°(2%+ᒴ6Ḅᦪ⚗Ḅ()A.240B.60C.192D.180᪆⌱A4+|=஺6(2%)6-$/=26-'஺64-3()6—3+=0,-r=2./ᦪ⚗Ḅ24-Cg=24X^^=240.5.4562,0,஺2,68ᡂ89ᦪᑡ-2,by,᝞;68ᡂ8<ᦪᑡᑣ>?802@()A.AB.,C.6AB.Aᡈ6A᪆⌱BV—2,tzj,⁐68ᡂ89ᦪᑡ,-8-(-2)_36

36J,.,62,b\,Kজ68ᡂ8<ᦪᑡ,•N=(-2)X(—8)=16,-ᔊ=±4,JQ=—2জZ?2=-4,.T/£[=/2=j.bߟߟᔆ226.Yᱥ[J=8xḄᯖ_ᑮab[*2—5=1Ḅ6ᩩef[Ḅghi()A.1B.2C/D.2j2᪆⌱CYᱥ[y2=8xḄᯖ_i(2,0),ab[6l=1Ḅ6ᩩef[i12slᑣᯖ_ᑮef[Ḅghid=,=<5.VTH7.nopq᪾s᝞sᡠvᑣwxḄ?Ḅ()/wx“A.22B.27C.31D.56

37᪆⌱Cz6{|}-஻=0,p=l,஻>20,ᑣ|}Az/{|}-஻=-1,஻=2,஻>20,ᑣ|}Az{|}-஻=-2,஻=6,஻>20,ᑣ|}Az{|}-஻=-3,p=15,p>20,ᑣ|}Az{|}-஻=-4,஻=31,஻>20,ᑣ|}.wx“=31.8.ABCḄᑁA,B,஺ᡠḄᑖimb,c,nbcosC+ccosB=asinA,ᑣABCḄiA.┦B.C.D.᪆⌱B⚪ᩩḄᱯ_ᵫ¡¢ᳮ-sin3cosc+cos3sinC=sin2A,ᨵsinB+Q=sin2A,¥¦sinB+C=sinA=sin1A,-sinA=l,9.45x,y§¨ᩩy+yW3,nz=2x+yḄᨬji1,ᑣ஺Ḅ4y2ᐗ-3,A.4B.1C.1D.2᪆⌱D

38X21,ᵫ§¨ᩩ-x+yW3,«x¬}᝞s,ay^x—3x=l,ὶ¯,ay—x—'i,A=1,2-2ᓽA1,ᓄz=2x+y,-y=12x+z,)’=lᵫs¬5²[y=-2x+z³_A´[ᙠy¶·Ḅ¸gᨬjzᨵᨬji2X12~=1,-஻=2.10.ᙠᙶ᪗»A(4,0),8(0,4),¥_+(2,0)¼xḄᐝ[¾[AB¿¼ÀÁ¼ᑮ[஺8·ᨬÀ¾[OB¿¼ÀJÂᑮP_ᑣᐝ[ᡠ¾³ḄÃp()A.2^10B.6C.3jD.2j᪆⌱A᝞s_Pᐵ@[AB,)¶ḄÅ_ᑖi஺C,᧕Ç-஺(4,2),

39C%-2,0&,ᑣᕜÉ=|PM+|MM+|PM=|OM+|MN|+WC].ᵫÅឋD,M,N,Cᐳ[...|CD|ᓽiᡠÇᵫÌ_ÍghÎ-Ï஺|=Ì=24¦.JT11.%2015•ÐÑÒÓ45ÔᦪÕ&=sin%cox+9&0>O,/VÖḄ×ᑖsØ᝞sᡠv,ᑣyÙ-ᨬj´XḄÚᔠiB.{1x=kiz—c.[1x=2kn——D.{/.r=24n6Üz)T77r7T7T᪆⌱Bᵫs¬54=-i2—3=4,ᑣ7=ᐔ

40••CO————z.717TITᵫ_«sḄz/_52àá+°=2.ᐔ᜛=6d•\/(x)=sin(2x—,ᑣ>,=/(x+1)=sil{2Cv+6)-6=sin(2x+§.ᵫ2x+᧡=—3+2E,-x=kK—^kBZ.f/=.(ᜩ+5)Ù-ᨬj´XḄÚᔠixx=kn-ðAGZ.2212.(2015NòÒÓ)ᙠó☢ᙶ᪗»xOyõöᙊø+$=1(஺>%>0)·Ḅ6_AiᙊúḄᙊûx¶üᑗ@öᙊḄ6þᯖ_ûy¶üÿB,CABC┦ᑣᙊḄ᳛Ḅ()A.ᨈXᵨB.(^A1)!᪆#⌱A᝞&ᡠ(,

41)ᙊḄ*ᯖ,(c,0),-ᐭᙊḄ᪗01234#$=78/ᨴ;,?AABC┦<A=AO_L_y>D,b2cN8AOV45஺AB=AF=~,CG$NBAD=/஽“!"Z.[\<1,ᓄ^e2+e~}<0,22a@ஹBC⚪13.(2015•ᐲGHI)JKLMᴊᢧPḄᓝRSTUᑖW⌱X3R4R5R…10RTZ[ᢥ]3^P_`ᨵKRSTbZᑣ^PbZḄ_`ᑣc᪵ḄbZḄ_`ᦪf(ᵨᦪg=h)!᪆#ᵫ⚪jkl⚪KRᑖmnᦪo⚪ᐳᨵ8qbZḄmrsᨵ3RTZ[ᢥ]ᨵC?oqtusᨵ4RTZ[ᢥ]ᨵC?oqtu…vwmx᪷zᑖmnᦪ{ᳮ4ᑮᐳᨵC?o+C'o+C?o+…+C1g=C?o+Cb+C?o+…+C!O-(C,O+C|O+CJO)=2IO-(1+10+45)=968.hᫀ#968

4214.2015•HIABC-A181clḄ⚔ᙠZKRᳫ☢AB=3,4c=4,AA]=2#,NBAC=90஺ᑣᳫḄ⊤☢f.!᪆#᝞&ᵫNBAC=90஺]☢᜜PQ,OfP஺ḄU஺☢஺,ᑣᳫḄf02,ᵫ⚪jAB=3,AC=4,NBAC=90஺ᡠvBC=5,fAA|=2#,I257ᡠbOP=y[d,ᡠv஺3=\/6+=],ᡠvᳫḄ⊤☢f#4ᐔ*0^=49ᐔhᫀ#49ᐔஹKI215.(2015□HI)kᜮᦪm஻¡,+]=3,ᑣ(஻+1)3+2)Ḅᨬ¤.12/12R4!᪆#\•¦ᦪa,b¡[+¨=3,ᓄ^s©ªs/?=2஻=1[325()«¬.h+2a=3ah..\(a+\)(h+2)=cih+b+2a+2=4ah+2^^+2=^.yyhᫀ#y

43[10g2(x+l),X´0,16.k¶ᦪ«¥)=2K¹¶ᦪg(x)=y(x)—"7ᨵ3R¿ᑣ¦ᦪ"ZḄI—x—2ÂxWO,.!᪆#¶ᦪ#x)Ḅ&Æ᝞&ᡠ(¶ᦪ/U)=—f—2X(A;W0)Ḅᨬᜧ1,ᦑË⌕0ÍÎÍ1,ᓽ3Ð12Ñx)=ÒᨵRÓÔḄ¦ᦪ᪷ᓽ¶ᦪg(x)=AÕK"2ᨵ3R¿./OXhᫀ#(0,1)⌱d⚪ஹ⚪f⚗F(m)Kஹ⌱X⚪1.kÖᔠA={XN—2X—3>0},Öᔠ2=Z,ᑣ((RA)C8=()A.{—3—2,—1,0,1}B.{—1,0,1,2,3}C.{0,1,2}D.{-2,-1,0)!᪆#⌱Bᵫf-2x-3>04xV—lᡈ>3,ᑣÖᔠA={x|xV-lᡈ%>3},ᡠv[RA={X|-1WXW3},á8=2,ᑣ([RA)CB={-1,0,1,2,3}.

442.)iäᦪᓫæçᦪz=l+éfêA.1+iB.1-iC.-1+iD.-1-iê1—i~—2i!᪆#⌱Bz=1+zl-.=1+^~=1-i.1v1A3.)஺=ì%ᡃb=g/%x,c=,7%x,ᑣ]ᑡᐵòÑᡂôḄêA.a52,••ê¤fீf,>ᓽ,.ீ/ு.,.ு>*/ᦪfx=/nxᦪAc

454.ᦪf(x)=1(/og%x)2_]Ḅ*+,()A.(j)2)B.(0,+°°)C.(0,l)U(l,+~)D(0,£)U(2,+8)8᪆:⌱஺ᵫᦪ*+>?(/og2X)2—■1>0,BX>0,ᡠE(/og2X)2>l,log2X>lᡈlog2^<~1,8G02.5.ᦪy=f(x)ḄJKᔣMNOPQᓫSTUᦪy=es(2x-SḄJKZᔠᑣy=f(x)Ḅ8᪆]()=sin2x+:=sin2x*C.yD.y8᪆:⌱Cᵫ⚪a>Gbᦪy=aw(2x-5=si"2xḄJKᔣeNOfᓫST,+]=$!i(2x+§ḄJK.>Gᦪy=f(x)=sk2lx6.᡻n᝞JᡠpḄqr᪾JtuvḄbḄw4,ᑣJxᑨz᪾ᑁজᜐ~()

46A.2B.3C.4D.58᪆:⌱Aa=lb=luvᩩᦑ~᡻n᡻nTb=2,a=2;a=2b=2uvᩩᦑ~᡻n᡻nTb=4,a=3;a=3b=4uvᩩᦑ~⌨vᦑᑨz᪾ᑁজᜐ~aW2.7.ᦪ“2015”xᔜSᦪ8,ᦪ“᝞aSᦪ”ᑣᵨᦪ0,123,4,5ᡂḄZᦪBᜧ¡2015Ḅ''᝞aSᦪ”ᨵQ.A.21B.22C.23D.248᪆:⌱Cᓱᱏ¦ḄSᦪ§¨¡8,Qᦪ0©,2,5:0©,3,4.0,1,2,5ᡂḄZᦪBᜧ¡2015Ḅ“᝞aSᦪ”ᐳ1+2+2+ᵨ=11Q%0,1,3,4ᡂḄZᦪBᜧ¡2015Ḅ“᝞aSᦪ"ᐳ2¬=12Q%ᦑᐳ23Q.8.?®┵P-ABCDḄ±²J᝞Jᡠpᑣ³®┵Ḅ´☢¶

47-4—·²J´²J¸²JA.6+4B.9+2C.12+2D.20+28᪆:⌱C᪷º»¼Ḅ±²JG»¼½¾☢¿ÀÁ´☢PCDᚖá¾☢ABCDḄ®┵᝞Jᡠp;,®┵Ḅ´☢¶S=SZ\PCD+2SAPBC+SAPAB=1X4XA/32-22+2X|X3X2+1X4X^32+22-22=2V5+12.9.?ÄPᙠÆᱥÈx?=4y¦ÉÊÄPᑮÄM(—1,2)ḄÌÍUÄPᑮÆᱥÈᯖÄÌͧÏGᨬwÄPḄᙶ᪗()

48A.(l,JC.(-1,2)D.(1,2)8᪆:⌱BÆᱥÈx2=4yḄᯖÄFḄᙶ᪗F(O,1),ÓÈÔqy=-l,ÕÄPÖPQ±1,ᚖQ,×ØFP,ᑣ|PQ|=|FP|.ᦑMQ஻yÚ|PM|+|PF|ÏGᨬw|QM|=2Á(Á1)=3.ÛÄP(—1,y),ÜᐭÆᱥÈÔq(Ál)2=4y,8Gy=஻10.×ÞßÁ·Ôàá(ᔜ☢ḄÄᦪᑖã1,2,3,4,5,6)äåGᑮḄÄᦪᑖãmஹn,Öᔣça=(஻஻)tᓰ=(1,-1),ᑣ஺U6ḄᜳêᡂÃê±êÀᑁêḄᭆ᳛½()A.|B.-^C.ᔁD◤8᪆:⌱Bᵫ⚪a>G஻ï஻ᙳÏñ1ᑮ6,ᦑᔣçaᨵ6X6=36òÏóᵫcosீa,m-njrbுB0ீ%b)W5ᑣ஻2õ/ᑡ÷>Gø᪵Ḅ(,%஻)(1©)(2,1),(2,2),.7m2ᓝm2(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).217ᐳᨵ1+2+3+4+5+6=21(Q)ᦑᡠúḄᭆ᳛û=ü=ý.2x+2y21,11.tx,yþÿᩩᔣa=(3,2),b=(x,y),ᑣa•Ḅஹ2x—)W1,()A.5B.,5

49--57--42-,解析选A•ᔣQ=(3,2),b=(xy),.\ab=3x+2y,z=3x+2y,!"#$%&'(Ḅ)☢+9,᝞./ᵫz=3x+2y,ᑣy=1$+#3)456y=17+#3ᵫ.89:;56.v=1>23zx=y,x=l,+],ABC8E356y=—G+]ḄH,Iᨬᜧ3LEzᨬᜧ3ᵫ3NO2A—y=1,3=1,ᓽ8(1,1),LE2=3T1+2X1=5,nlittABCAE356y=-1r+WHIᨬX3LEzᨬX3ᵫ;ZZ,=]NO/:2r2y=i$I?'$$ᓽ4")3LEZmin=3XZ+2XZ=\,ᑣpzW5.

5012.c:dᦪfgXCOST3lᙠᐔvoḄpCxorxoWOo3st[/'rwo/<ᐔ?r#1ᙳ3{|AḄ}roA.r1X30&U%0,XoB.r~,O&U%0,▢C.r18,1XoUrX3+8oD.J8,-U+7rx7LX717LXN᪆/⌱D*/dᦪ7rXo=XCOST3.7/'rxo=cos-r-x-vsin^-,VlᙠtoḄpCX0r70o,AAZA2/2.•.=E+W3k&Z,x=U+4,kGZ,7ḄᨬXW1,ᓽsin=±l,+.[frxo]2<7t2rA200AZZirA22[2]13ᓄW/ᙶᡈa<•—ᙶ.¢ஹ£¤⚪13.ᙠ“-38Ḅ§¨%©3ªᦪ⚗$¬.rᵨᦪ®!¯oj1ஹN᪆/᪷±⚪²39Oᐸ¢⚗§¨%Ḅ´⚗Wr=CS.r2ro8-r-r=C8-(-l)r-28-r-j8r+l

51—y,ᑖ᪆9O38—·=0E3ᨵr=6,LE37^=112.¯ᫀ/11214.»T/¼6C½ḄCᑮ56/ḄI¿ḄᨬXÀW¼6Cᑮ56/ḄI¿.c:¼6G/ᑮ56//y=xḄI¿$¬¼6C2/f+ry+4o2=2ᑮ56//y=xḄI¿3ᑣÃᦪ஺=.xḄI¿dgÆN᪆/¼6C2}ᙊÈWr0,—4o,ÉÊᔆ=ÌḄᙊ3ᙊÈᑮ56/:y==2Ì3ᡠ|¼6C?ᑮ56/ḄI¿W4—ᔆ=Ì.¼6G½ḄCrÎo3Ïoᑮ56//y=xḄI¿ᨬÐWd,ᑣBr᝞ᐜoḄᑗ6)Ó¬56y=x.c:dᦪ>=Ô+஻3ᑣy'|x=xo=2xro=1,\1ᓽxo=t3%=/+஺3Crw,ᐝoᑮ56//y=ÙḄI¿d—4~aᵫ⚪²:797--当-时4-456/Ú¼6ClÛÜ3#ᔠ⚪²3ᦑß>.4-9答案-415.c:àpᔣstá=l,aÚb—aḄᜳäW120஺3ᑣভḄ}

52N᪆/æᱏ=a,#.᝞.ᡠAè/ᑣᵫé=ê1ᜧéëì஺Ú8ḄᜳäW120°,3NABC=60°,ëᵫ|AC|=|b|=1,ᵫðñ»ᳮ4^]=ó^O|a|=^sinC(p,sinCsin6033¯ᫀ/ô3¥]16.c:dᦪ%x)=e'—஻?x+lḄ.8W¼6C,÷¼6ClᙠÚ56y=exᚖ5Ḅᑗ6,ᑣÃᦪmḄ}.N᪆/dᦪḄᐔV)Ḅùᦪ/'(■¥)=/1஻?3÷¼6ClᙠÚ56y=exᚖ5Ḅᑗ63ᑣᑗ6û᳛2=e*—ý3st(e"—"?)e=—1,ᓽe*—m=—1ᨵN3ᓽ"?=e'+1ᨵN3Ve'+~>~,e¯ᫀ/+°°

53⌱d⚪'⚪f⚗Fopqhஹ⌱d⚪1.÷ÿᦪzz+|z|=l+2i,ᑣzḄA.2iB.1C.2D.i᪆⌱Cz=a+஻i(a,bGR),%ᐭz+|z|=1+2i,'a+bi+yja2+b2=1+2i,1/7=2,*zḄ2.2.+,-ᔠA={x[0l,ᓻ)=E+2“ᑣG/(x)

54A.4"TB.4Z,-1C.2"~D.2"-l᪆⌱D:ZaᦪᑡcndḄe"⚗hS“k஺|+Ḅ=£*஺2+“4=ᔁ*rstu◀w'xaq=T$τ=2,a2"1=2"~~'S"=~r^=4஺-2^)'+.?=2"-1.nJJI5.yzᦪy=sin2x(x@R)Ḅ{|ᑖ}ᔣ஻?(஻?>0)Kᓫ*ᔣ஻(஻>0)Kᓫ*ᡠ'ᑮḄsK{|zᦪsin(2x+§Ḅ{|ᔠ*ᑣ஻?ᓝ”Ḅᨬ()A.B.^C.nD᪆⌱Cyzᦪy=sin2v(x£R)Ḅ{|ᔣ"z(">0)Kᓫ*'zᦪy=sin2a+777)=sin(2x+2m),,•ᐸ{|y=sin(2x+*Ḅ{|ᔠ*.•sin(2x+2஻?)=sin(2x+§,JTTTTT2஻z=d+2E(Z£Z),ᦑ஻2=+ᐔ(ᦇ£2),Z=0*'ᨬyzᦪy=sin2Hx£R)Ḅ{|ᔣ஻(஻>0)Kᓫ*'ᑮzᦪy=sin2(x—஻)=sin(2x—2஻)*\•ᐸ{|y=sin2x+%Ḅ{|ᔠ*?.sin(2x—2஻)=sin2x+4,J—2஻=4+2E(k£Z),ᦑ஻=JJ11ᐔZ),ᦇ=—1*஻'ᨬ\஻2+஻Ḅᨬᐔ.226.+,¡¢Ci'ᓩ=1(“>0,b>0)Ḅ¤¥᳛ᖾ*Jᩩ¨©¢/,ªᱥ¢C2'y2=4xḄᯖ®P¯¢/ªᱥ¢C2°±²Ḅ³*ᑣ|PQ=()

55A.2B.3C.4D.5fV2/—᪆⌱D••¡¢G',J7=1%4>°$b>0Ḅ¤¥᳛´*•஻=6••Jᩩ¨©¢/:y=x,%ᐭªᱥ¢C2'?=4xw'P4,4,'ªᱥ¢C2'&?=4xḄᯖF1,O,|PF|=^4-l2+42=5.7.µ,e”e2¶uᚖ¯Ḅᓫᔣ¸*¹ᔣ¸Mi+e2º+&2Ḅᜳ½Z±30஺*ᑣ¾ᦪ2Z±A.±2B.±\/3C.±ᓩD.ᡈᙶ᪆⌱DV€],G¶uᚖ¯Ḅᓫᔣ¸*ÂÃ+Ä2=2Å2+2஻1$«2+஺=72+1,বᓝ762|2=஺+26Ç762+È62&2=+1$Ç♦+e?|0+ᑓ21="ᐭ?+1,Ê2஺]+஺2>஺1+Ae=2ef+A2+lee+Ae?=22,.,.22=Ë+1Ì"+1Xcos300,᦮ᳮ'J¡ᓝr2r20,'2=ᡈÏ.I28.¹¯¢at+by—1=0஻*/?£0,+8&&ᑖᙊf+J—2Ñ-2y—2=0,ÒÓ+ÔḄᨬA.4^2B.3+2´C.2D.5᪆⌱BᙊÕÖᓄx—l2+y—1=4,ᙊ¥ᙶ᪗%1Ù*Ú¯¢ᑖᙊ*ᡠÛÜOÝᙊ¥,ÚÞ“+஻=1,ᦑß+1àá1=+â+b=3+§+á23+24ᓺ=

563+2᱐9.Jä⇪⇩çèÕéA8CO-A|B|G£iḄ⚔Aᜐìí*îèÕéḄ⊤☢*ᢥᨬòó¢ôõᑮö⚔Ci÷*ᑣᑡ{øùwÛ⊤úèÕéû⇪⇩ᨬòôõó¢Ḅèü{SA.জঝB.জঞC.ঝটD.ঞট᪆⌱CᵫAḄ⊤☢ᢥᨬᑮ⚔Ci!"ᐳᨵ6&'()*+,☢ABBMi/,☢BCGBi'ᑮ123,☢ᑁᙠ6789:AG;<88Ḅ8ᦑ?@ḄABCঝ.*+,☢ABC஺/,☢CDDiG'ᑮ123,☢ᑁᙠ6789:AG;

57Y111.Rᦪ)=1ᔛ+,$ga)=e”-2,JVa£R,3/?e(0,+8)mg(஻)=ys)ᡂᑣb-aḄᨬkC()A.In2B.-In2C.2,\/e—3D.e2—3᪆⌱Ag(a)=#b)=m,/.ew-2=ln1+1=/w,.\a—2=lnm,b=2-em—^ᦑ஻-q=2e஻2-g-Inm—2(in>0).t("z)=2em—In"z—2,/?'Qk)=2Se஻?232᧕'ᙠ(0,+8)Fᦪ"(3)=ᦑ஻("?)=2e"?2/2Inm—2ᙠ=}ᜐᨵᨬkᓽb-aḄᨬkCIn2.+2,x^[0,1)12.(2015□¡¢)R£¤ᙠRḄᦪᓻ)¦§¨)=)ᓻ[2—©,x^[—1,0)2x+5+2)=ª«)g(x)=~^7$ᑣ¬¨)=g(x)ᙠ®Ḅᡠᨵ°᪷²/C()A.-7B.-8C.-9D.-102X+5᪆⌱Aᵫ⚪lg(x)=«+>'ᦪ_/(x)Ḅᕜ¶C2,ᑣᦪ/U),g(x)ᙠ®·25,1WḄB¸᝞BᡠºᵫB7»ᦪ)x),g(x)ᙠ®Ḅ¼CA,B,C,᧕8Ḅ½ᙶ᪗C23,*CḄ½ᙶ᪗CᑣAḄ½ᙶ᪗C242ᡠÀ¬ᐔ1)=g(x)ᙠ®Ḅᡠᨵ°ᦪ᪷²/C23+(—4-r)+r=-7.

58ÂஹÄÅ⚪13.2015•ᐲÈ¡¢ÉOᙠᡠᨵÊËÌͪÎἠÐÑ°°ÒᑴÔÕᐰ×Øᐳᨵ28&ᨵᦔÚÛ»ᵨÝÞḄ°ÒÌἠßᵨḄᨵᦔÚÛᨵàáÚᡝÞãäÚᦟæÚçJ2015è᧡궮120ÒÌἠḄÊËëìíîmᑮï⊤:ÌͪÎἠ)àáÚᡝÞãäÚᦟæÚᐸHÚÛÊËᦪa68h19R“2=57,ᑣᵨᦟæÚÌἠḄÊËḄ⚣᳛ᜧõC.᪆ᵫ⊤ö«+/?=120-6-8-19=87,,+a~b=51,+.a=12,஺=15.ᑣᵨᦟæÚÌἠḄÊËḄ⚣᳛ᜧõC᜻=0.125.øᫀ:0.12514.úN23᝞BᡠºḄû¬B*⌕ýᐭḄxkÿḄyᑣ᪵ḄxḄᔠ.

59/rᡝ஻᪆ᑖ᪆ᔜஹᔜḄᵨ᪷!"ᡠ$Ḅ%&'(Ḅx2,xW2,2x—3|XW2,ᵨ)*+ᑖ,-ᦪy=4'*Ḅ-ᦪ/⚪12…ᡈ1[x~=xfJ,x>52aW5,,[x>5,'ᡈj12x=0,ᡈx=l,x=3.,2x-3=x-=xffஹ67ᫀ{0,1,3}15.9x,y:;<=ᩩ?,x+Wl,ᑣ@᪗-ᦪz=x+2yḄᨬᜧ.J2—1_

60᪆DEFqx+yWl,⊤$ḄO☢QR2ᑮ᝞"ḄUABCYᐸᑁ\ᐸAaf),B(W-1),C(2,-I).efg/:z=x+2ylmOno/pqrAs@᪗-ᦪztᑮᨬᜧu.z«^=|.7ᫀ|16.z2015•~9DE2f—xy1:;x>y>0Ḅᦪx,yឤᡂ,ᑣᦪcḄᨬᜧ.2-X2᪆.,DE2y—1:;x>y>0ḄᦪxஹyឤᡂJcீ2Vx-xyj=f>iF,•C^TT7,6஺=7,

61r-4r+2(?-2-^2)(?-2+^2)ᑣ/=(j)2h(r-02o/2+6sfzz0,-ᦪ.&ᓫ⌴uo1V/V2+¢sfzr£0,-ᦪ6஺ᓫ⌴¤u...of=2+¥sᜧ஺¦2ᨬ§#2+ᖾ=2/4.ªᦪcḄᨬᜧ2^2-4.0ᫀ:2ᔾ4¬ª᫏7⚪Ḅ¯7⚪$.t1mQHᦪ8mQu⚪Ḅvu⚪x⚪h±²-ᦪ"³´ឋ¶Dy⚪z{|z2015·¸¹ὃz12ᑖ»'-ᦪ¼=$᨜xsin%—^/3cos2x.z1ÄᐔrḄᨬ§ÆᕜÈÉᨬᜧuz2ÊËᐔvᙠÎÏḄᓫឋ.D⚪}~|

62(1)✌ᐜᑭᵨÓÔÕEஹªÖ²ÕEe-ᦪᓄ)=Asin(s+9)+BḄØEᯠÚᓽ&Ä./U)Ḅᨬ§ÆᕜÈ´ᨬᜧu(2)✌ᐜ᪷ᡠÜÝḄ¦Þßà2x1Ḅ¦ÞᯠÚáᔠÆâ-ᦪḄᓫឋÄ.ã᪗ä7ᫀå(1)(x)=si—x)sinx-y3cos2xæ=cosxsinx—^-(1+cos2x)=usin2x--^cos2x-=sinl2x---Iߟ-ç4ᑖèéHx)Ḅᨬ§ÆᕜÈn,ᨬᜧ2ᡝ.6ᑖên2nnஹফoìDí■s0W2xïWn,7ᑖðño0W2x-gw?,ᓽT~WxWô■sf(x)ᓫ⌴9ᑖOZO1Zo,W2X-T"Wn,ᓽ*WxWsHx)ᓫ⌴¤.11ᑖöÏ&'Hx)ᙠ?ô■Ïᓫ⌴uᙠô■,4p■Ïᓫ⌴¤.12ᑖO1z12oã▅ᔁrùå

63¬পûür2ᑖýþজᓄsin(2x—ᙶ4ᑖঝᨬᕜᨬᜧᔜ1ᑖᐳ2ᑖ.(2)"#$ᑖ%&'জ)*+Ḅ.1ᑖঝ)ᓫ0⌴2⌴345ᔜ2ᑖ,ᐳ4ᑖঞ)891ᑖ.:;⚪=>?@'ᓄAᦪ)Ḅ;᪆DE᦮ᳮᡂ_Ax)=Asin(cox+9)+BḄQDR@'ᕜAᦪ./U)ḄᨬU@'ᵫxḄ.WXcux+pḄ.[@'ᑭᵨ᦮^_ᣚAᦪᐔv)Ḅᓫ045c@'d89.:eᑖf?(1)ᑏᐰᑖ@i'jk;⚪l>mnᑖ$Ḅ@iᨵᑣqᑖrᑣsᑖᡠuᑖ$@iX⌕ᑏᐰ᝞(1)"mx⌕y./U)Ḅ;᪆Dᓄ)zᨵᑖ(2)"m)2x—^Ḅ.zᨵᑖ.(2)ᑏ&ᑖᐵ}'jk;⚪l>mḄᐵ}$ᨵᑣqᑖrᑣsᑖᡠuᙠ⚪⌕ᑏᑖᐵ}$᝞(1)"m.*x)Ḅ;᪆DᓄAsin(ox+9)+BḄQDᔲᑣrᑖ(2)"ᵫ᦮^_ᣚ)ᓫ045ᑏ)ᔲᑣᑖ.(3)Wnᑖ';⚪l>mWneᑖḄ᪷᝞(1)"mA

64ᦪᐔV;D᪆Ḅᓄ᝞)┯⚪zᐰ┯ᑖ.:j$?Aᦪ=cossinx+1—=c\'os?¡XER.¢17UḄᨬᕜ;7T7T¤;¥Ḅᨬᜧᨬ.;'¢1ᵫᓻcos.r&inx§+¨ᧅinx.c°SL*§+ᙶ=^sin2xᙶ(1+cos2x)+ᙶ1.cªC=^sm2¬q-cos2x=sin¢2r§.6ᑖ27rᡠu/UḄᨬᕜ7=®=ᐔ.7ᑖফ°DXᙠ45:±ᵨ.|¥n3Aᦪᙠ45³,I¥n2Aᦪ.10ᑖX-4)=-4>4´)=4µ4ᑖ

657TITIIᡠuAᦪ¶ᜧ)ᙠ·45a¥Ḅᨬᜧᨬ12ᑖ"⚪RU¹ºᣚ»;U¹Q:¼⚪½¾?(2015▷§ὃ)(12ᑖ)A4BCḄᑁ¹4,8,CᡠjḄÆᑖÇa",c.ᔣÊm=(a,$ᚗ»஻=(cosA,sin8)ÌÍ.পA;(2)Ï0=Ð6=2,ÒA8CḄ☢Ô.:;⚪ÕÖ?(1)ᑭᵨᔣÊÌÍᑡ+>ᑭᵨØXᳮÙᓄ¹Ḅ+>;.(2)ᑭᵨÚØXᳮÙᓄcḄ+>c,ÛᑭᵨU¹Q☢ÔÜD;ᡈᐜᑭᵨØXᳮ)¹CḄØÛᑭᵨU¹Q☢ÔÜD;.:᪗ᫀ?(1)°ᡠunsin8—á:osA=0,2ᑖᵫØXᳮsinAsinBÐsinBcosA=0,3ᑖãsinBWO,æçtanA=5.4ᑖTTᵫkOVAVTT,ᡠu4=1.6ᑖ(2)é'ᵫÚØXᳮa2=/+c2—2Z?ccosA,

66ça=.,b=2A=?t7=4+/-2gᓽ/-2,3=0.8ᑖ°c>0,ᡠuc=3.10ᑖᦑZkABCḄ☢Ô:஺csinA=*^.12ᑖéR'ᵫØXᳮï=ðsin3æçsin3=n.7ᑖ2ñãᵫ஺>b,A>B,ᡠucos3=7.8ᑖᦑsinC=sin(A+8)=sin(8+5).ᐔτò3y/2ló=sin8cosqᓝcos6sing=ব.1஺ᑖᡠuZkABCḄ☢Ô:a஻sinC=^~^A2ᑖ:▅ᔁ$ø?(1)"#$ᑖ%&'জᵫù஻஻ÙᓄU¹ᐵú2ᑖঝᵫØXᳮÙᓄ¹Ḅᐵú1ᑖঞ¹Ḅᑗ1ᑖট᪷ý¹Ḅ.¹2ᑖþᜐᢣḄ.(2)ᑖজᑭᵨᳮᐵcḄ2ᑖঝ"#cḄ$

672ᑖঞᑭᵨ☢()"5*2ᑖ.(2)+ᑖজᵫ-ᳮ"sin81ᑖঝᵫ./ᐵ0"cosB1ᑖঞᑭᵨ1ឤ3ᣚ"sinC2ᑖটᑭᵨ☢()"5672ᑖ.89⚪;<=>?ᓄᩩBC"஻"+>ᑭᵨ-ᳮFGHᓄ1>"4ḄI1Jᦪ$L>"AḄ$M>ᑭᵨᳮ"Hcᡈᑭᵨ-ᳮO1ឤ3ᣚ"sinC.P>ᑭᵨ1QḄ☢()"☢(.8RᑖS=(1)ᑏᐰᑖ>VW9⚪XVCᨵᑣ]ᑖC^ᑣ_ᑖCᡠaᑖḄ>V⌕ᑏᐰ.᝞(1)YCd⌕ef஻“?ᓄh1ᐵ0iᑖ(2)YCd⌕ᑭᵨᳮᑏ#cḄᐵ0iᑖCᡈd⌕ᑭᵨ-ᳮ"#sinBiᑖ.(2)ᑏᑖᐵjW9⚪Xb=>A>8,ᑣcosBḄ$i.

688W=(2015•ᐲ)ᙠXA8CYCAஹ8ஹCᡠWḄHᑖhaஹAc,CcosAsinC(1)"AḄᜧ;(2)஺=6,"Z?+cḄ¢$.9প:¥o*sin?=sinl$••cosA=sinA,/.tanA==,VXA<7C,.•.A=?4ᑖabফsinA-sinsinC~~.•§=4sinB,c=45sinC,7ᑖ.•b+c=45sin3+4sinC=45[sin8+sin¨ᐔ-A—B]8+sin'+B=12sin%B+§,9ᑖC.ᐔ6τᐔ5ᐔ♦rB+rr.,.6<12sin%2+1W12,11ᑖ

69ᓽb+cG(6,12].12ᑖ.t29:u⚪Ḅvu⚪8¶⚪·¸=7T(2015•»¼½ὃ)(12ᑖ)᝞¿C1À┵P-A8CYCPC_L.☢A8C,PC=3,ZACB^.D,EᑖhÉÊAB,BCÌḄCÍCD=£>E=WCCE=2EB=2.(1)DEJ_.☢PCD(2)"+☢A-PD-CḄ$.89⚪ÓÔ=(1)⌕.☢PCD,Õ?ᓄhDELCDÖDELPCZ(2)×Øvᙶ᪗0Ce⚪?ᓄh".☢PADÖ.☢PCDḄᔣÜḄᜳḄ$.8᪗lᫀ=(1)ᵫßCJ•.☢ABC,OEU.☢ABC,rPCLDE.1ᑖᵫCE=2,CD=DE=^2,âCDEhῪv1QCᦑC£)_LOE.3ᑖ

70ᵫPCCCD=C,£>Eᚖv.☢PC஺ᑁèᩩéêvÉCᦑOEJ•.☢PCD4ᑖQ)᝞¿CX஺ì஺FᚖvCEF,᧕OF=FC=FE=1.îïEB=1,ᦑFB=2.5ᑖrxjr'r*r>)ᵫNAC8=u5CDF//AC,~7~7'=D/^—ACiJv333ᦑACvDFv6ᑖaChᙶ᪗ðCᑖaCA.CB.CPḄ/ᔣh=ñCyñCzñḄ-/ᔣ×Øvᙶ᪗0•ᑣC(0,0,0),P(0,0,3),A(-|-,O,O),E(O,2,O),D(1,1,O),ED=(1,-1,O),Z?P=(-1,-1,3),DA=(-^-,-1,0).7ᑖù.☢B4£ḄᔣÜhC2]=úCyi,zj,

71ᵫ"i•DP=O,ni•DA=O,yi+32i=0,ü1ᦑÕ¢"ß(2,1,1).9ᑖᓷ|%=0,ᵫ(1)OE_L☢PC£),ᦑ☢PC஺Ḅᔣᦢᓽ“2=(1,-1,0),10ᑖ#$ᔣ"I,"2Ḅᜳ(Ḅ)*+/\«1'«2V3..3cos<«1,”2ு-|||„|-6,11ᑖM12ᦑᡠ?@☢(A-PD-CḄ)*+C.12ᑖD▅ᔁGHIJ(1)KLGMᑖNOPজRMPCLOEM1ᑖSঝᑨVWCO_LOEM2ᑖSঞMWYZM1ᑖ[ᜐ]^ᢣOPCCCZ)=C^D1ᑖ.J(2)KLGMᑖNOPজ?WF8dACḄeM1ᑖSঝfghij(ᙶ᪗mn?WGḄᙶ᪗M1ᑖSঞ?W☢PADḄᔣM2ᑖSট?W☢PCDḄᔣM1ᑖSঠ?Wᔣᜳ(Ḅ)*+M1ᑖSড?W@☢(Ḅ)*+M1ᑖ.Ir⚪tuIJvwPᑭᵨz☢ᚖjḄឋ}RMPCJ_OE;J@wPᵫ☢ḄROCDYDE;JwPᵫz☢ᚖjḄᑨᳮROOE_L☢PCDS

72JwP☢Ḅ?WFBACḄ+SJwPfmn?WGḄᙶ᪗SJwP?☢ḄᔣSJwPᐭ?ᔣᜳ(Ḅ)*+SDᑖMI(1)ᑏᐰMᑖwPr⚪uMᑖGḄwᨵᑣᑖᑣᑖᡠ¡MᑖGwv⌕ᑏᐰ᝞J(1)KRW¤M1ᑖPJ(2)Kfghij(ᙶ᪗?WGḄᙶ᪗¤M1ᑖ.(2)ᑏOMᑖᐵ¦Pr⚪uḄᐵ¦Gᨵᑣᑖᑣᑖᡠ¡ᙠ¨⚪v⌕ᑏ©Mᑖᐵ¦G᝞J(1)Kv⌕ROªzzᚖjnᢣOᩩjz¬®¯Mz☢ᚖjᔲᑣ±MᑖJ(2)Kv⌕?WACஹḄe³®¯fghij(ᙶ᪗mv⌕ᐜ?W☢ᔣᜳ(Ḅ)*+®¯?@☢(Ḅ)*+.(3)µ¶·¸MᑖḄ¹RPr⚪uḄµ¶º¸MᑖḄ᪷¼¹R᝞J(2)Kfghij(ᙶ᪗m·¸?WGḄᙶ᪗ஹ☢Ḅᔣdᜳ(Ḅ)*+MᑖḄ᪷¼¹R½vªᦪ¿µ¶ᜫÁÂÃÄÅYÆ┯Á.DGÈÉI᝞ÊËÌABCQ·ÍÌP£>_L☢ABC஺ZDPC=30°,AF_LPCGF,FE//CD,PDxE.

73(1)ROPCFJ_☢ADFS(2)?@☢(Ḅ)*+.rP(1)ROPᵫ⚪ÎD4-LOC,DA±DP,DC±DP,ᦑ¡஺ÐGOPᡠᙠjzxÒ0cᡠᙠjz)ÒD4ᡠᙠjzzÒfghij(ᙶ᪗m1ᑖÔ·ÍÌA8CDḄËe“ᑣC(0,40),A(0,0,a),EFPEᵫEF//CD,ᨵÕ=ÕÖÔ×Ø=ᑘ(0஽Û1),ᑣØ£=ÜÝ,

74MF((1—j-)>/3a,j-a,O),AF=((1—j?)>/3a,-ra,—a),CF=((1—j-)>/3a,(®v1)a,0),ᵫAF±CFMᐭÞ•CF=0,ᓽ(1-x)2-36f2+x(x—l)fl2=0,Mà=ᩩ=1áâ).±£,ã,0).ᡠ¡?Mᡠ¡('ᡝ=(.----:a,0),DF—(å,0),=(0,0,a),3ᑖᡠ¡•DF=(0,0,a)=0,4ᑖᦑCF±DF,CF-L0A.æ஺ØCZM=஺,ᡠ¡CFJ•☢AOF.5ᑖ(2)?M6ᑖæ3/'=0ga,%,—a),Ô☢AEFḄᔣn=(x,y,z),ᑣ”.3Þ=(x,

75*ax-az=0,஻*3ᡝ=(x,y,z>3V3,3,0,—a,±v஺4cix+^ay-azx=l,M☢AMḄvéᔣ஻=1,0,ᑖæᵫ(1)☢ADFḄvéᔣCF=(■”,vê0),1ᦑcos(nwCF)1,0,/v=í,“ᑖëஹìv4X2aᵫÊ@☢(O-4F-E┦@☢(ᡠ¡ᐸ)*+ð.12ᑖ.t3ᭆ᳛8u⚪Ḅvu⚪Dñ⚪òóI(2015ôõöὃ)(12ᑖ)øᓤ⁚ᔛüýᡃÿḄ.ᨵ10ᐸ2ᾙ35Ḅ᜜ᐰ.⌱"3.(1)#ᔜ"ᑮ1Ḅᭆ᳛((2)X⊤*"ᑮḄᦪ#XḄᑖ-ᑡ/ᦪ012.34⚪678(1)✌ᐜ#;10⌱"3Ḅ⌱<ᦪᯠ>#;⌱?ஹᾙஹᔜ1Ḅ⌱<ᦪᨬ>ᑭᵨDᐺᭆFḄᭆ᳛GHIJ#4;

76(2)✌ᐜPQXḄRS"TU0,1,2,ᯠ>#ᐸYḄᭆ᳛ᑡ;ᑖ-ᑡZ[#;ᦪ012.3᪗]^ᫀ`(1)aA⊤*cd“ᔜ"ᑮ1”ᑣᵫDᐺiFḄ^᳛GHIJkd0cl1ீpᨵP(A)=q=4,5ᑖc()(2)XḄᡠᨵRSTU0,1,2,6ᑖxy(z=0)=ᜓ=|7ᑖP(X=1)=(2j8=75,8ᑖ()P(X=2)=^^=*.9ᑖXḄᑖ-ᑡUX012771P15151510ᑖ7713ᦑE(X)=0X—+1z+2=(().12ᑖ3▅ᔁ8(1)ᑖ#;y(A)ḄT5ᑖ.(2)ᑖজᢣ;XḄT1ᑖ(ঝᑖ#;XYḄᭆ᳛ᔜ1ᑖ(ঞᑡ;ᑖ-ᑡ1ᑖ(ট#;12T2ᑖ.

7734⚪¡8¢ᑭᵨDᐺᭆFḄᭆ᳛IJ#ᔜ"ᑮ1Ḅᭆ᳛(£¢#XḄ"T(¢#XḄ¤TYḄᭆ᳛(¥¢ᑡ;ᑖ-ᑡ(¦¢GH12.3§ᑖ¨8(1)ᑏᐰᑖ¢ª«4⚪¬¡ᑖḄ¢ªᨵᑣ®ᑖ¯ᑣ°ᑖᡠ±«ᑖ¢ªQ⌕ᑏᐰ.᝞(2)´⌕µPᑏ;XḄ"Tᓽ1ᑖ(¤#;ᭆ᳛Tᙳᨵᑖ.(2)ᑏᑖᐵ¹«4⚪¬¡Ḅᐵ¹ᨵᑣ®ᑖ¯ᑣ°ᑖᡠ±ᙠ^⚪»Q⌕ᑏ¼ᑖᐵ¹᝞(1)cdAᒹ¾Ḅ¿ÀcdᦪC(CC(,ÁSÂÃᑏ;ᭆ᳛ḄTy(A)=/(2)XY¤TḄᭆ᳛ÄÅÆ#;[ÁSÂÃᑏ;ᑖ-ᑡ⌕ᑏ;ᦪ012ḄGH¬¡[ÁSÂÃᑏÇÈ.(3)PÉGH]P(2)µPᑏ;XḄ"TʵP#;Yᭆ᳛4ËÌ⚪§ᑖḄᐵ¹᝞ÈÌᜐGH┯Ï>ÈRÐ[.3ÑÒ8Ó0᪥ÕÖὶØÙᡠᨵÚÑḄ⁚ÜÄᵫᵬஹÞஹßàáâὁäᢗἠËQᔲèᝄ.ᵬஹÞஹßàὁäÄᨵ“èᝄ”ஹ“êQ”ஹ“ëì”íἠᔜî.¤⁚Üᢗἠ

78»ᵬஹÞஹßàὁäÅÆx´Sᢗîἠ¤ïᢗíἠḄðíἠḄᭆ᳛ÄU;,xïᢗἠñ°ᨵòó.ôᢗἠÇÈõöᨵ÷î“èᝄ”ἠᑣËQø⁚Üᨬùèúᝄ(ᔲᑣø⁚ÜÁSèúᝄ.(1)#Ó⁚ÜḄᢗἠÇÈᨬùèúᝄḄᭆ᳛((2)#ø⁚ÜᢗἠÇÈᡠ¾“èᝄ”û“êQ”ἠἠᦪüûXḄᑖ-ᑡÊᦪ012.4(1)“Ó⁚ÜḄᢗἠÇÈᨬùèúᝄ”cdUA,ᑣcdAᒹýø⁚ÜR±è÷î“èᝄ”ἠᡈὅ“ᝄ”ἠ.•.•ᵬஹஹὁᢗἠᢗἠḄἠḄᭆ᳛!"/ᢗἠ$%&ᨵ()•P(4)=%)2*+<2-)3=56ᑖ(2)ᡠ0“ᝄ”1“23”ἠἠᦪ51XḄ6"0,1,23p(X=o)=g)3=.p(x=[)=c789;P(X=2)=C(|Xl)-27:P(X=3)=e3=;8ᑖ<=XḄᑖ>ᑡ"X012316128P2727272710ᑖ

79...XḄᦪB*C"E(X)=OX*+1KL+2x11+3XP=2.12ᑖூR⚪TUI(2015ᜩZ[\)(12ᑖ)]^ᦪᑡ_`abcẆ2=Ḅ0"eᦪg#l),“GN*,l=1,஻2=2,஺2+஺3Ḅ+஺4஺4+஺5ᡂqrᦪᑡ.(1)sqḄ61_`aḄt⚗vwx(2)yz{122^,஻GN*,sᦪᑡ_}aḄ~”⚗1.I⚪(1)ᑭᵨᐜsᦪᑡḄvrvᑏ8$Ḅt⚗vwx(2)ᑭᵨ┯$sᦪᑡḄ~⚗1.᪗ᫀ(1)ᵫ]^ᨵ(Ḅ+44)(஺2+Ḅ)=(஺4+஺5)ߟ33+஺4),ᓽ஺4஻2=஺5—Ḅᡠ“20-1)=Ḅ(஺-1).2ᑖ<"gW1,ᡠ஺3=஺2=2.ᵫai=ci\'q,¢g=2.3ᑖ஻—I£஻=2%—1(%£N")§`=42¨1=2”|=2—^~;4ᑖ£஻=22(&£N*)§`=¬=2"=2.5ᑖ

80fl—1f.2/~,஻"᜻ᦪ6ᑖ{2^,஻"Ꮤᦪ.(2)ᵫ(1)¢²=?*"2"=´T,¶£N*.7ᑖ¸-12y¹aḄ~஻⚗1"S஻,ᑣS஻=lX/+2X/+3X1H---½("ߟ1)"¾=5ᓝÀKÁT,|s=lX^T+2X^?+3XpH----F(஻1)X^=7+஻X*,8ᑖ/?¨ÆÇw$¢1È1,,1,1,,1஻2"஻.2஻sÉS஻=ᓝ5ᓝ¾ᓝ…ᓝ.஻_—j"-Í=2ÍÍ10771-2᦮ᳮ¢£=4Ð஻WN*.llᑖ"I-2ᡠᦪᑡ_%aḄ~"⚗1"4—fT,”WN*.12ᑖ▅ᔁÓÔÕ(1)Ö×Ó¢ᑖØÙÚজ᪷Ý]^ᩩßᑡ8ᐵávqḄ¢2ᑖxঝsg¢1ᑖxঞᑖåᑏ8_`aḄt⚗vwå¢1ᑖ.Õ(2)Ö×Ó¢ᑖØÙÚজᓄç¢1ᑖxঝᑏ8S“èS”Ḅqw¢1ᑖxঞs8é

81ᓄç¢2ᑖxটs8S”¢1ᑖxঠᑏ8ìí¢1ᑖ.⚪îÕïÚðñᐵáqḄés8qḄ6xÕ{ïÚ᪷ÝqᦪᑡḄt⚗vwḄ3Kᑏ8t⚗vwxÕïÚs8zxÕòïÚᑏ8S”èó“ᑭᵨ┯$s8S.xÕôïÚõìí.bᑖö¢(1)ᑏᐰ¢ᑖïøÚùá⚪úû¢ᑖÓḄïøᨵᑣüᑖýᑣ&ᑖᡠùá¢ᑖÓïø3⌕ᑏᐰ᝞(1)ᑖ஻=241ᑖ(2)ᑏS,9Ḅ⊤1ᑖ.(2)ᑏ!ᑖᐵ#$%&'⚪)*Ḅᐵ#+ᨵᑣ.ᑖ/ᑣ0ᑖᡠ2ᙠ4⚪56⌕ᑏ8ᑖᐵ#+.᝞(1):;ᢣ!qWl,@ᨵ஻3=(2)BᨵCD9,@EFGEHIᑏJK.(3)LMNOPᑖḄQR$'⚪)*LMSOPTᑖḄ᪷VQR᝞(2)NOFὪ=2XYPᐵ#Z[ᜐាP^_᧕┯ḄᙢY.I%+defgᦪᑡjklḄmn⚗oS„,%pqN᦮ᦪnsᨵ6S„=l-2a„.

82y1zFᦪᑡj“"lḄ}⚗~y2zgo=ᓽF஻=*++…+ᓃ'$y1zᵫ65“=1-2%6S-1—1—2஺஻-]y22z.nCDr6a஻=2a-]-2a,ᓽᓽ=ᵬ஻-1y஻22z,2ᑖnnᵫ6sl=6஻i=l—20஻i=g,I.ᦪᑡj஻஻lPᦪᑡ~q=,4ᑖ••%=y=y+1.6ᑖফ•.&=y3"+1,.•=2”+1,8ᑖZ=¡¢=£¤1஺ᑖ᫏u⚪f⚗F᫏u⚪f⚗FohqmQHᦪ8mQ1.y2015ᔠ¦§¨zg©ABCḄᑁ¯A,B,Cᡠ%Ḅ°ᑖ±oa,b,c,²³cosA

833cosC)=(3c—a)cosB.পF·Ḅ¸(2)¹cosB=஻²©ABCḄᕜ»o14,F6Ḅ¸.Ei1-3,¼ecosA-3cosc½¾+¿$(1)ᵫÀcosA—3cosc)=(3c—஻)cosB.ᑭᵨNÃ6ᳮÅÆ$----Ç$B------3sinC-sinA-,-----------.ᓄÊ᦮ᳮᓽÅ.qinA1|(2)ᵫ7=7c=3a.ᑭᵨËÃ6ᳮcosB=KᓽÅ.'$প'"(cosA-3cosO=(3c—a)cosAcosA-3cosC3sinC-sinAᵫNÃ6ᳮ,cosB-sinBᓽ(cosA—3cosQsinB=(3sinC-sinA)cosB,ᓄÊÅsin(A+8)=3sin(8+C).Ì4+8+஺=ᐔ/.sinC=3sinA,Î[,⊈.Çf.'sinC3…ஹ¼_sinAJÒQ)ᵫZÓ஺=3%ᵫËÃ6ᳮcos3=o

84b2=a1+c2—2accosB=a2+9tz2—6a2x1=9a2..♦.0=3a.Ìa+b+c=14.Za=2,Î[b=6.2.ᙠAABC¯4o┦¯Õ¯AஹBஹCᡠ%Ḅ°ᑖ±o“ஹÖc,gᔣØ,஻=(cosJIA,sinA),n=(cosA,—sinA),²ÙÚ஻Ḅᜳ¯oG(1)LMmnḄ¸ÜF¯4ḄᜧÙ(2)¹஺=Þc==,F©A8CḄ☢àS.½¾+¿$(1)᪷áᔣØḄᙶ᪗äM¯åᦪ¸ᓽÅF¯.(2)ᵫËÃ6ᳮF஺᪷áSzM8C=T"csinAF☢à.'$(1):|/74=^cos2A+sin2A=1,|n|=yjcos2A+(—sinA)2=1,ττæ_J_••ffl,fl|Hl\'|/Z|'COS3?.Vmn=co^A—sin2A=cos2Af/.cos2A=g.V0

85ᦑS=^bcsinA=y[3.3.(2015•ᐲ짨)ᙠ©ABCᑁ¯A,B,CḄ%°ᑖ±omb,c,¹bcosA+6/cosB=_2ccosC.(1)F¯஺ḄᜧÙ(2)¹஺+6=6,²aABCḄ☢ào2ÙF°cḄ».½¾+¿$(1)ᵫðñNÃ6ᳮÅ$sinBcosA+sinAcosB=_2sinCeosC,ᓄÊÅcosc=-1,JᔠCḄôFCḄ¸(2)ᵫa+6=642+62+246=36,᪷á¯õḄ☢à~ÅF⊈Ḅ~,öZFa2+b2Ḅ¸ᑭᵨËÃ6ᳮFcḄ¸.'$(1)ᵫ⚪qñZ?cosA+acosB=_2ccosC,NÃ6ᳮÅsinBcosA+sinAcosB=ù2sinCeosC,sin(A+B)=ù2sinCeosC,ᵫA,B,஺P¯õᑁ¯Åñsin(4+8)=sinCN0,/.cosC=-5,ᵫovcvᐔc=ü.(2)'+a+h=6,A«2+/?2+2^=36,Ò©ABCḄ☢ào2ÙÿinC=2ᓽᙶ=2ᓄ=8,ᑣ/

86+=20,ᵫᳮc2=a2+/?2-2«/7COSC=20-2X8X(^-1)=28,ᡠc=2.4.(2015□!)ᙠ$ABC%&AஹBஹC()Ḅ+ᑖ-.aஹbஹc,/03cosBcosC+2=3sinBsinC+2cos2A.(1)1&AḄᜧ3(2)4b=5,sinBsinC=],1$ABCḄ☢65.789:;(1)ᓄ/0<=>2cos+3cosA—2=0,ᓽ(2cosA—1)(cosA+2)=0,ᓽ>?cosAḄ@AᔠDOVAVᐔᓽ>1AḄ@.be5(2)FᵫGᳮ/siE4=,.ᵫᳮ஺2=ᕈ+02—2J854,F6=5,ᓽ>?cḄ@ᵫK&L☢6M=ᓽ>?.?;পᵫ3cosBcosC+2=3sinBsinC+2cos2A,2cos2A+3cosA—2=0,ᓽ(2cosA—1)(cosA+2)=0.?cosA=3ᡈcosA=-2(PQ).TTRSOVAVᐔᡠA=,(2)FᵫGᳮ,sinBsinC=sinA-^sinA=^r-sin2A=y?;bc=^a2,

87ᵫᳮa—b'+c~~2/?ccosA,F6=5,ᡠc=4ᡈ஺=T.ᡠ>;S=%csin:bc=5=ᡈU2224vlo5.ᙠ$ABC%&AஹBஹ஺ᡠ(Ḅ+S஺ஹbஹC,VWXcos2A—cos28=2coseYA)cos6+4).(1)1&8Ḅ@3(2)b==bWa,1஺Y᜛’Ḅ\@D.789:;(1)ᵫᩩ^ᑭᵨK&ឤ2-2sin24-2cos28=;-2sin2A,1cos^BḄ@>cosBḄ@de18Ḅ@.(2)ᵫb=y[3^a,>B=;.fᵫGᳮ>.?;পᙠ$ABC%,*/cos2A—cos2B=2cos(£—A)cos/+4)=2(ᙶcosA+3sinA)(ᙶcosA—3sinA)3i3-2s?A-]sin2A=5-2sin%FRScos2A—cos2B=1—2sin2A-(2cos2B-1)=2—2sin2A_2cos2B,

8832—2sin2A_2cos2B=^—2sin2A,/.cos?B=?,/.cos8=±3$.cᐔA2ᐔ3=?ᡈ7.ফ2=-B=yᵫGᳮh=i=ᡡ=£=2,”=2sinA,c=2sinC,2ᦑ^c=2sinA-sinC=2sinA-sinmnYA&=,sinAYᙶcosA=3sin%A—*p,^bWa,ᡠqWAVuvWA—vV3,ᡠ3sin%A_2&£xyzp.jr6.2015ᒹᜮ!p/0}ᦪx=2cos%3x+°%w>0,0<9<5ḄᨬGᕜSᐔ90&SḄḄY(%.প1}ᦪ/UḄᓫ⌴;

89%2&ᙠXABC,a,b,cᑖ-S&4,B,CḄ()+4mY?=5$a=3,1ᓃ+cḄᨬᜧ@.789:;পᵫ/0ᕜM=>1஺ᵫ□0pSᐔvpḄḄ(%V0᜛rr7TVq>10,>}ᦪ?᪆=2E—ᐔW2x+W2E,ᓽ>?X&Ḅᓫ⌴.m2pᵫY=AᔠAḄD>1AḄ@ᵫᳮ>1;஻2=s+cyY36c,deᨵS+cp2=9+3/?cW9+3m”pᑭᵨ§¨©<=ᓽ>18+cḄᨬᜧ@.?:m1p;¬pḄᨬGᕜT=n,.*.60=2,:0pSAxpḄḄ(%,1.—ஹ,5ᐔ.,,7Cᐔ2±+3=²+/,Vby71.•./(x)=2cos%2x+³ᐔ/.2E—7iW2x+y^W2E,137rTT>?;^ᐗWlai—,kGZ.

90ᦑ7U&ᓫ⌴S;´Yµ^,eY·஻£Z.=2cos%AYᑴ=ºফ.cos%A-ᔆu7t4n117tY¾¿YÀ717t*Y=©.a2=b2+c2~2bccosA=(b+c)2—3bc,S+c)2=9+3bcW9+3.6+cW6,ÁVÂÁ஻=c=3Ã\<µ.ᦑb+cḄᨬᜧ@S6.᫏u⚪f⚗Fojq9:1.2015ÄÅ!p᝞ᙠKÇ┵É-ABC%AC=BC=2,ZACB=90°,AP=BP=AB,PC-LAC.

91(1)1Ë;PCJ■Í☢ABC3(2)1Î☢&B-AP-CḄ@.789:;(1)᪷ÐÑ☢ᚖÓḄᑨᳮᓽ>ËÕPCÍ☢A8C;(2)Ö×ᙶ᪗ÙᑭᵨᔣÛÜᓽ>1Î☢&B-AP-CḄ@.?;(1)ËÕ;\ABḄ%9D,ÝÞPD,CD.;AP=BP,+.PD±AB.\'AC=BC,+.CD±AB.'+PDC\CD=D,ÎABJ•Í☢PCD.;PCUÍ☢PCD,+.PC±AB,F3PC-LAC,PC-LÍ☢ABC.(2)᝞CSà9Ö×áÓᓭᙶ᪗ÙCfyz.

92ᑣC(0,0,0),A(0,2,0),8(2,0,0).]P(0,0,/).•.•^8|=|▢=2`+.t=2,P(0,0,2).aAPbcE,deBE,CE.'+\AQ=\PC\,\AB\=\BP\,J.CE-LAP,BELAP.NBECfg☢iB-AP-CḄk☢i...d1nEC=(0,—1,—1).EB=(2,—1,—1),$cosN8EC=llττm1=n~^=o,COSQ“ᖾq3•$g☢iB-AP-CḄ~^[\2.(2015rstu)᝞w$ᙠyz┵P-ABCDb$|J_k☢ABC஺$AD//BC,AD±CD,~AD=CD=2ᔾ$BC=4®PA=2,cMᙠPO.

93pMপ1Ë;Afi±PC?(2)4Î☢&M-AC-஺ḄᜧS45஺1uÍ☢Cᡠᡂ&ḄG@.?;(1)ËÕ;᝞äES8cḄ%9ÝÞAE,ᑣ4O=EC,AD//EC,ᡠå+LAEC஺SÍæå+LRSᦑ4E-LBC,FAE=BE=EC=2ᔾᡠNA8C=NACB=45°,ᦑ4B_LAC,FRS◌J•Í☢A8CO,ᡠA8-LB4,S.PAC\AC=A,ᡠABJ•Í☢R4C,ᦑᨵAB_LPC.(2)᝞ASà9ᑖ-éÑ4E,AD,APSx,y,zêḄGëêÖ×áÓ&ᙶ᪗ÙA-xyz.

94ᑣA(0,0,0),E(2y[2,0,0),BQ᱐Y2ì0),C(2ᖾ2v5,0),D(0,2.,0),P(0,0,2),PD=(0,2yf2i,Y2©(OW2W1),᧕M(0,2y[2X,2-2A),äÍ☢AMCḄYÜᔣÛSg=(x,y,z),m•AC=2V^r+2^/^y=0,}Yᑣ“i•A.M=2y/iXy+(2—2A)ø=0,)=ºX=YºZ=--T,A1ᓽú|=(Yü,.,ýj.FÍ☢ACOḄYÜᔣÛS"?2=(0,0,1),2Aᵫ⚪|cosீ᝞m>\=I(2zY=COS45%234+#)2ᓽM(0,ᖾ1),B⊈=(2.3/1),AB+=Q®-2yf2,0)()☢P4cḄ-./ᔣ1

95234BM5)☢6CᡠᡂḄ9:஺ᑣsinO=|cosீbMr,ARு|=ᗞ◤1=@.ᦑ348M5)☢B4CᡠᡂḄ9ḄCDE:^3.2015ᓭHIJK᝞LᙠNO┵A8C£M|8ICQiQR☢4BCD(SῪUVAB//CD,AB=2,BC=CD=\,⚔X஺ᙠR☢ABC஺ᑁḄZ[ា]:XC.প_`aA£bBCc2d34DD534ABᡠᡂ9:e_)☢ABC^Dt5)☢ABCDᡠᡂ9f┦9KḄhDtE.ijXkaf1`lamnoC,`l8CJ■)☢A0C,ᑭᵨ345)☢ᚖ3Ḅឋuvᳮ`lAD±BC.]2/-amn஺iM,ᑣ஺xlNDiMC:)☢ABC஺15)☢A8CDᡠᡂ9Ḅ-.)☢9ᙠRtZXCiCMQ_ycosND|CM=ᙶᑮ)☢ABCQi5)☢ABC஺ᡠᡂ9f┦9KḄhDE:ᙶ./|aᵫf1ACஹBC,01c~~ᚖ3᝞L39ᙶ᪗_yᐵXḄᙶ

96᪗_y)☢A8G஺Ḅ-./ᔣ1)☢A8COḄ-./ᔣ1.ᔣ1Ḅᦪ1_)☢48Goi)☢ABCDᡠᡂḄ9f┦9KḄhDE.a%1&`lamnQC,ᑣ5c_L)☢ABC஺ADiC±BC,ᙠSῪUVA5CQQmnAC,.A8=2,BC=CD=\,AB//CD,.BC±ACACnDC=C,t8C-L)☢ADC}f.ADi-LBC.(2)/-'AB஻C3,71+.^D\DC=yVCD=1,(.DiC==,ᙠR☢ABC஺QCM_L4B,mn஺|M,ᑣ஺|M_LA8,ᡠN£>]MC:)☢4BCQ]5)☢ABCDᡠᡂ9Ḅ-.)☢9ᙠRtZ!\£>iCMQCM=*,DiC=®

97ADM=yjCM2+DC2=^,+.cos^DMC=^,]]tA/5ᓽ)☢ABC\D\5)☢ABC஺ᡠᡂ9(┦9)ḄhDE:/|aᵫ(1)ACஹBCஹ01c~~ᚖ3,,.,AB//CD,NQQC=$aC=e.ᙠSῪUVA8CDQmnAC,AB=2,8C=CO=1,AB//CD,ᡠAC=W᝞L39ᙶ᪗ᑣA(e0,0),8(0,1,0),0)(0,0,2)☢ABCQiḄ-./ᔣ1஻=(x,y,z),

98n•AB=O,y-

99\~~^,}ᡠ)☢ABC஺1)☢ABCDᡠᡂ9f┦9KḄhDE:ᙶ.4.ᙠ᝞L1ᡠḄSῪUVABCDQAB//CD,A8=AO=BC=gcO=a,E^CDQX.dAE9VD4Eᢚ)☢D4EL)☢ABCE,mn£>B,DC,ᑮ᝞L2ᡠḄ¡¢D-ABCE,ᙠL2Q£¤¥⚪:12§:ABQX_`aDF1AC(2_|☢9A-BD-CḄCDE.ijXkaf1¨AEQX“mnHF,mnEB,ᑭᵨ☢☢ᚖ3`l4☢ᚖ3ᓽ஺”1■)☢A8CE,«-¬`lACJ•)☢DHF,®¯44ᚖ3cf239ᙶ᪗

100஻4ᙶ9ᑭᵨᔣ1Ḅᜳ9_y)☢DCBḄ/ᔣ1,”=0°,1,)☢DABḄ/ᔣ1²³|☢9A-BD-CḄCDE.af1`la¨AEQXH,mn§mnEB,:´£:S¶9VᡠO//JLAE,:)☢ZMEJ•)☢A8CE,)☢OAEA)☢ABCE=4E,ᡠ£W1•)☢ABCE,:4CU)☢ABCE,ᡠAC_L£W.:ABCE:)·N¶VCE=BC=a,ᡠABCE:¸VᡠACJLBE,:HஹFᑖº:AEஹABQXᡠHF//BE,ᡠACA.HF,:HFU)☢஺HF,DHU☢DHF,HFCDH=H,ᡠ4C-L)☢OHF,DFU)☢DHF,ᡠDFJ.AC.(2)mn8H,EB,

101ᵫ⚪¼9VABE:S¶9Vᡠᵫf1K஺஻_LR☢A3CE":ÂXᑖºHA,HB,ᡠᙠ34:x,j,zÆ,39ᙶ᪗᝞Lᡠ,ᡠ3/5=(O,-[a,ᙶj,3(=(—a,0,0),2)☢DCBḄ/ᔣ1:m=jx,y,zK,ᑣÊ—ËK+Ë=0ÌÍ2“1=(0,1,1),2)☢0ABḄ/ᔣ1”=(x',y',z'),DA=&o,_Ñfx'—y[3z'=0,[y'-z'=0

102mnVT6ᡠcos

103\5ᡠ|☢9A-8D-CḄCDE:5.(2015Ö×IJ)᝞LOØABC-DEFḄÙ☢BEFC(¶Ú:1ḄCÛVÙ☢BEFC_LÙ☢AOEB,AB=4,ZDEB=60°,G(DEḄQX.(1)_`aCE஻)☢AGFcফ_`aGBL☢BEFC((3)ᙠ4ß8cà(ᔲâᙠ-X§|☢9P-GE-B:45஺dâᙠ_BPḄÚcdÌâᙠxlᳮᵫ.ijXka(1)᪷ä4☢)·Ḅᑨvvᳮᓽ`lCE஻)☢AGF;(2)᪷ä4☢ᚖ3Ḅᑨvvᳮᓽ`lGBJ")☢BEFC;(3)39ᙶ᪗ᑭᵨᔣ1/èᔠ|☢9ḄᜧeÛëᐵᓽᑮèì.a(1)`lamnCQ5AFîïH,ᑣH:8ḄQXmnHG.:G:DEḄQXᡠHG//CE.:CEC)☢AGF,"GU)☢AGF,

104ᡠCE஻)☢AGF.(2)`laBE=1,GE=2,ᙠAGEBQZG£B=60°,ᵫhDvᳮBG=e.ᡠBG2+BE1=GE1,ᡠGB1.BE.:Ù☢BEFCA-Ù☢ADEB,ð௃☢BEFCQð1☢ADEB=BE,GBU)☢ADEB,ᡠGB_L)☢BEFC.(3)BG,BE,BC~~òᚖ339ᙶ᪗8-óz.Ꮇ2ᙠ4ßBCàâᙠ-XP,|☢9P-GE-B:45°.)☢BGEḄ/ᔣ1”=(0,0,1),2§(0,0,A),2£[0,1].G,0,0),£(0,1,0).ᡠGP=(-yy,0,cl),ö=(-÷,1,0).ivGP—>=0,2)☢PGEḄ/ᔣ1:஻=(x,y,z),ᑣn-GE—>=0.-ex+Az=0,ᡠ,-ex+y=0.

105øz=l,y=i,X=yj^9ᡠPGEḄ/ᔣ1:"=úA,1K:mn=1,ᡠixq4+m+ix=1,2=ᙶ6[0,1],ᦑBP=þ.ᙠ4ßBCàâᙠ-XP,|☢9P-GE-8:45°,BP=£.6.2015ᔠ᝞AACC44ᵪ!"#$☢44&ᵫ$☢AAGC)*ᚖ,NACG=NBA4|=60஺44=2.প123AA,±BC|521☢6A-CGSḄ6:531<☢=C-AB-CtḄ>?@.ABCD31EA4ḄFCGO,IJ஺8,LMᩩOPQ☢ᚖ,ḄᑨSSᳮᓽVWX52ᑭᵨ[=CC1B,CGB☢:*\LM6:]^_`ᓽa53bOGᙶ᪗eC

106ᑖgb04,0C\,஺8Gxh)hzhjkᙶ᪗lᑭᵨ$mᐵlLM_`$☢ABCḄoᔣqr$☢ABC\ḄoᔣqḄᜳtḄu?@ᓽa.v3(1)2w3xA4iḄFCG0,IJ3A4QC44&y!"#NACG=NBA4=60°,<[=AAB[=A41G!"\[=i.BO±AA,C|O_LAAi,tz'0Bn0Ci=0,.•.A4J$☢OBG,(2)'[=CCBCCiB☢:*\,VA-CCBi=VA-CCiB=VB-CCA=^SAACCOB=1,{{v☢6A-CCiByḄ6:G1.(3)ᵫপAAJOB,z•.•$☢AAB\B$☢AACiC)*ᚖ,yt.♦.08$☢A4|C,C,.0A,0C\,OB,[ᩩ,Q||ᚖ,}b஺Gᙶ᪗eCᑖgb04,OCi,08GxhyhZhjkᙶ᪗l᝞

107ᑣA—1,0,0,30,0,~,C-2,®0,GO~0,1,0,^,AC=-1,73,0,AC1=1,^,0,x$☢ABC.ABCiḄoᔣq/஻Ḅᙶ᪗ᑖgGc8,ᓽq,ᵫara+J^c=0,—a+J^=0,ᡠbaE஻2=~1,—1,ᳮaE஻=~-1,-1,-/\3..cos\m,n8=ᡠb<☢=C-A8-GḄ>?@G᫏u⚪f⚗Fomqᭆ᳛81.2015•⊝□Ẇឋ~᧡ᜧ~rᓥ¡¢£ᦪ¥¦Ḅᐵl§¨Ẇ©ªᑖg«¬3ᨴ1¯°3ᨴ5¯Ḅ±ᜩr³´µ±ᜩ±100⚩¡·¸¹Ḅ¢£ᦪVᑮ»ᧇ᝞½⊤3¯¿3ᨴ1¯3ᨴ2¯3ᨴ3¯3ᨴ4¯3ᨴ5¯xÀ101113128

108¢£ᦪy(⚩)2325302616(1)Â3ᨴ1¯°3ᨴ5¯FÃ⌱2ᜩ«¢£Ḅ¡ᦪᑖgG஻?஻1ÆO஻ᙳÈ~É25”Ḅᭆ᳛;AAA(2)Ï᪷Ñ3ᨴ2¯°3ᨴ4¯ḄᦪÑ1ÒyᐵÉxḄQឋÔ&mÕy=6x+“5(3)×⌱E3ᨴ1¯r3ᨴ5¯Ḅ|ᦪÑØGÙ´ᦪÑÚᵫQឋÔ&mÕVᑮḄÛ_ᦪÑrᡠ⌱ÒḄÙ´ᦪÑḄÜᙳÈÝM2⚩ᑣÞGVᑮḄQឋÔ&mÕ"a☠ḄàáAAAAফFᡠVḄQឋÔ&mÕ"ᔲa☠äåὃ]^3Ô&,QḄmÕ"y=ᐸF6=n__2èLéx•y;=|A——A——---------/a=y-hxx2i=iABCD3(1)ᑡÒëìÆOíᦪᵨÆOAᡠîëìÆOḄïᦪ◀bÆOíᦪᓽa.(2)1Ô&,QmÕᓽa1Ò.(3)ᵫ(2)aᑨñÜ"ᔲÝM2⚩.v:(l)/n,஻ḄᡠᨵE@ö÷ᨵ:(23,25),(23.30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),ᓽëìÆOíᦪG10.x“஻z,஻ᙳÈ~É25”GÆOA,ᑣÆOAᒹîḄëìÆOG(25,30),(25,26),(30,26).33ᡠb2(4)=¨ᦑÆOAḄᭆ᳛G¨.

109(2)ᵫᦪÑ1VM=*11+13+12)=12,~=|(25+30+26)=27,37~=972.᳘=11X25+13X30+12X26=977,£r7=112+132+122=434,3*72=432.z=1i=ITjXiy-n-x.yA=1977-972ᵫ,rb=-------------434-432"X2/1=1A——5a=y—bx=27-TX12=-3./zA5ᡠyᐵXḄ!ឋ#$%&'y=]X—3.A5)3*+x=10-.y=/X10—3=22,|22-23|V2;A53᪵.+x=8-.y=]X8—3=17,|17—16|V2.ᡠ.6Ẇ8ᡠ9ᑮḄ!ឋ#$%&;<☠Ḅ.2.)2015•?@AB*CDE᛻᪗HᑴJḄKLMNᢣᦪ)QRAQ1*TKLMNUVWXᐵY᝞[⊤]

110KLM`adaeafe^_NUVbcbcbcbcAQ1g[50,[100,E150,[200,300h[0,50)j100)150)200)300)k[⊤;ᵫᜩLmn9ḄᐰC?pqᔜ6s@t2015u3ᨴw-xy-z{ᑮḄᦪ|:pq@tAQIᦪg?q@tAQIᦪgp~108ᓅ104p924237kX⎎5611461ᜩ105456D93AQIᙳg]135AQIᙳg]90(1)xḄg.᪷|k⊤dḄᦪ|.ᑨ?ஹpq@tAQIᦪgḄ%¡Ḅᜧ£ᐵY(¥◤ᑏ¨©ª)/(2)E¬qKLMN“^”°“`abc”Ḅ±²@t³´⌱¶3s@t·¸¹Dº»¼Ẇ.½⌱ᑮKLMN“`abc”Ḅ@tsᦪ'0jḄᑖ¿ᑡ°ᦪÁÂÃ.ÄÅÆÇ]প᪷|AQIḄᙳᦪhᐸÊËs@tḄAQIgᓽ<¨x,Íᐭ%¡ᓽ

111<¨ÏШ?pq@tAQIᦪgḄ%¡/(2)᪷|ÒᐺᭆÕḄᭆ᳛%ר³´ØN஺ᑖÚ¶1,2,3-Ḅᭆ᳛.Ûᑡ¨ᐸᑖ¿ᑡ.ÜᐭᦪÁÂÃᓽ<¨ᐸᦪÁÂÃ.Ý](l)x=82,Sj.aKSM⎅.(2)“^”²@tᨵ2s.“`abc”²@tᨵ4s/᪷|⚪çEḄᡠᨵ<é¶g']1,2,3;P^~2)~~cf~5'P^~3)~CT~5'.•êḄᑖ¿ᑡ':0123131P555131ᡠE('=1X^+2X^+3X^=2.3.(2015•í~AB)wÁ᪥³´ï¶qᑖðñ¼òᐸkÁᡠ◤-ó(ᓫõ]ᑖö).÷ᡠ9ᦪ|øᑴᡂ⚣᳛ᑖ¿û%ü(᝞ü).ᐸd.kÁᡠ◤-óḄj;[0,100],᪵þᦪ|ᑖ·'[0,20),[20,40),[40,60),[60,80),[80,100].

112⚣᳛·ÿ0.0065b—f—0.003(--ᓝ|ττO20406080100(1)XḄ(2)᝞ᡠ◤1Ḅᵭ"ᙠ᪥%&'"()᪥600,-ᨵ/,0ᵭ"%&(3)2᪥Ḅ-3⌱4,'64,ᡠ◤20ᑖ8Ḅ9ᦪ;ᑡ@ᦪAB.(0-ᡠ◤20ᑖ8Ḅ⚣᳛Fᑡ'ᑭᵨdef`ḄABmnWAB.oMপᵫaM20Xx+0.025X20+0.0065X20+0.003X2X20=1.ᡠ0x=0.0125.(2)-ᡠ◤1Ḅ⚣᳛

113ᡠ0600,-ᨵ72,0ᵭ"%&.(3)XḄvg<0,1,2,3,4.ᵫw'Gxᡠ◤20ᑖ8Ḅᭆ᳛

114(2)¡ᔜgᳫ'¢ᳫ⁐Ḅg£<ᡂ¥g£';¡gᳫḄᡂ¥g£¡ᦪᑡ@ᦪAB.IJKLM(1)¦§¨A<“ᡠgḄᳫ⁐”'ᵫcvWP(A)=1-2X3+3X3+4X32-9X9-3-cj+cj+d_5(2)⚪P'XḄvg<0,1,2,ᡠgḄᳫ⁐Ḅᭆ᳛<—C5=18,ᡠgḄᳫ⁐Ḅᭆ᳛<¯ὅᙳ=M.ᑖWP(X=0),P(X=1),P(X=2),ᵫcvWXḄᑖ>ᑡ@EX.oM(1)¦§¨A<“ᡠgḄᳫ⁐”'2X3+3X3+4X32ᑣP(A)=1-9X9=ᱏ(2)⚪P'XḄvg<0,1,2,C=+C+CM5ᡠgḄᳫ⁐Ḅᭆ᳛

115515P(X=2)=gX-=-jXḄᑖ>ᑡ<:X0121375P241872137519EX=0XZT4-1X—+2XZT=1o/Z36-5.2015ÂÃÄ<ÅᑖÆᙢÈÀÉḄÊË'ÌÍᦋÏÐÑÒÓÔ'ÕÖ×ØÙÉÚÛἠÝᑴß.àÑ22máḄᙢÈἠÝ᝞â⊤M^ᙶáéMᓫxMkm0cxW66cxW1212Vx<22ἠÝîᓫxMᐗÄ345äᨵᵬஹx^å'æç^ᙶḄáéêàÑ22má.ëwᵬஹ^ìàÑ6máḄᭆ᳛ᑖ<:'ᵬஹ^ìàÑ6máðàÑ12máḄᭆ᳛ᑖ<ᧅ1ᵬஹ9ᡠò^ìóᵨḄᭆ᳛2¦ᵬஹ9ᡠò^ìóᵨô@ᑡöᦪAB.IJKL'%1Wᵬஹ^ìàÑ12máðàÑ22máḄᭆ᳛ᑖᑡ'ᯠùoABᓽ.oM%1ᵫ⚪Pw'ᵬஹ^ìàÑ12máðàÑ22máḄ᳛ᑖ<:'

116ᑣᵬஹ9ᡠò^ìóᵨḄᭆ᳛Pi=X+MX:+]x=,J/JJJd12ᡠ0ᵬஹ9ᡠò^ìóᵨḄᭆ᳛z=1—P]=l—Q=?2ᵫ⚪^=6,7,8,9,10,ᑣ=6==+^=7=|x|+|x|=|,pe=8=|x|+|x|+|xi=iPC=9=|x|+|x|=|,po=xfᡠ$஺Ḅᑖ(ᑡ*+ᑣ£'J=6X*+7x[+8X+9Xw+10X*=8.6.2015ᒹᜮ89:;<=Aᙢᑮ8ᙢᨵᵬCDᩩFGᵬFGHA-C-D-8,CFGA-E-F-G-H-B,ᐸLCDMஹEFMஹGHMSH᧕ᛋVGM.ᎷXYZᩩGMᛋV[ᔲ]^_`.YZᩩGMḄᛋVᭆ᳛cdᙳᛋVfg᝞⊤1ᡠj.

117klmnoᛋVᭆ᳛Xᙠq1)stᓄyᙠ(0,9stᓄ.ᙠxᛋVḄyz{.|FGᵬ◤~500ᐗ|FGC◤~545ᐗ.ᛋV1f◤~20ᐗ.G*CDMdᙳᛋVfglm100|ᵬFGḄᑮ⊤2ᦪ.⊤1CQMEFMG/7M1ᛋVᭆ᳛Xy4dᙳᛋVfga21(ᓫ+f)⊤2ᛋVfg(ᓫ+f)⚣ᦪ[0,1]8(1,2]6(2,3]38(3,4]24(4,5]24(1)CDMdᙳᛋVfg஺Ḅ(2)ὃ⇋ᡠ~¡Ḅᜧ*⁚¤⌱¦|ᵬFGḄᭆ᳛;(3)ᙠ(2)Ḅᩩ¨{©4L|ᵬFGḄªᦪ«*X,XḄᦪ¬¡.

118G®¯+(1)ᵨ±MḄfgḄdᙳ²$³´Ḅᭆ᳛ᓽ*ᡠ.(2)ᐜ·|FGᵬᡠ~Ḅ¡¸,¹·|CFG~Ḅᦪ¬¡*£஻.¦|ᵬFG´»¼£(545+஻)±½ᔠxஹyḄÀᑭᵨÂÃ^Ä·⌱¦|ᵬFGḄᭆ᳛.(3)ᵨªᦪ²$⌱¦|ᵬFGḄᭆ᳛ᓽ*ᡠ.Å+(1>=0.5x7oo+1.5XÇ+2.5X◤+3.5XÈ+4.5XÈ=3.(2)X|FGᵬᡠ~*^ᐗᑣE^=500(1-x)+(500+60)x=500+60A-,X|CFGḄ~*஻ᐗMஹGHMᛋV[ᔲ]^_`ÉP(஻=0)=(±)P(//=20)=(l-y)|,P(஻=40)=)(l-£),P(஻=60)=%,+.Er)=40y+5,É|CFGᡠ~Ḅᦪ¬¡*£(545+᜜=545+=550+4O.y,Î⚪⌱¦|ᵬFG´»¼(550+40))±(500+60x)20,61±4)±5W0,Ð|

1197P(|ᵬFG)=o7(3)É⚗ᑖ(EX=4XE=3.5.o᫏u⚪f⚗F(p)ᦪᑡ1.(2015•èé89)êëäᦪᑡìíî,ïä”>0,ñ஻⚗ò*S”$3=6,õ»¼Ḅ±02a2,÷ᡂëßᦪᑡ.(1)ì*îḄù⚗ïú(2)X4,=û±ᦪᑡì1%îḄñ஻⚗òCḄ.a-a+2nnG®¯+(1)âüᵫêᩩ¨ᑡᐵþ✌⚗ḄḄ⚗(2)ᦪᑡḄ⚗ᐭb.=ߟ!—,ᵫ⚗ᦪᑡ஻,Ḅ"“⚗T“Ḅ~.&•+2'(1)ᵫ§3=6,Ḅ.஺1,2ᦢ஺8ᡂ34ᦪᑡ[3஺]+3d=6,jo]+d=2,[4(«1+602=2^1+7rf),ᓽ12B+3஻/.5/=0,=1,♦+d>0,+.d=i.

120/.a=(71+(7?-1)d=1+1X(஻-1)=஻n(2H=IJ^.K).T,.τ,ri,ii,ii,.iii,iii31________[2(஻+l)-2(஻+2>2.(2015•QRST)UVᦪᑡḄ""⚗XS“ZS,=2a“.2(஻eN*).(1)Ḅ⚗ফ`b—a„\og^-,abḄ"n⚗T,,.ncdef'পᐜᵫᦪᑡ⌴j✌⚗lm஻=஻.1n.⌴jopqr✌⚗4sX2Ḅ34ᦪᑡᑣᐸ⚗q(2)ᦪᑡXḄ⚗ᐭb=no„log^J-,᦮ᳮᑭᵨ┯~%Ḅ"n⚗T„.'(1)”=1,ᵫS”=2a“.2,©=Siq0=2,ᵫS.=2.2জqS,-i=2-1-2(஻22)ঝᵫজ.ঝ'஺“=2ᓽ-|(஻22).ᦑr✌⚗4sX2Ḅ34ᦪᑡ⚗Xᓽ=2".(2)ᵫ(1)q'/?„=a„log^=2"-log^=n-2".ᑣ7=1X2+2X22+3X23+…+஻X2”.27=lX22+2X23+3X24+-+nX2"+l.

121oq'-5=2+22+23H----1-2"-nX2"+'=^YZ^—nX2n+'=(\-n)-2n+'-2.+.T=(n-l)-2,,+'+2.n3.(2015•ᐲRST)UVᦪᑡ'a,=20,6=7,+2.=.2(“6]<).(1)Ḅ஺4ᦪᑡ⚗(2)ᦪᑡ"2஻⚗XS,mᨬᜧnḄ.2ncdef'(1)ᵫ஻1=20,=7,a஻+2—஺஻=-2,ᑖ஻=1,2ᓽqḄ஺4,ᵫ⚪qᦪᑡ᜻ᦪ⚗ஹᏔᦪ⚗ᑖr¡.2XḄ3ᦪᑡ¢ᔠ3ᦪᑡḄ⚗ᑖnX᜻ᦪ,nXᏔᦪo¤¥¦q(2)ᵫS2஻=ai+a2T¨©=(ª+஺3T¨©-1)+(஺2+…+«஻)ᑖᑭᵨ3ᦪᑡḄq.'(1);஺|=20,஺2=7,ᓽ+2.=-2,஺3=18,᝞=5.ᵫ⚪qᦪᑡ஻”᜻ᦪ⚗ஹᏔᦪ⚗ᑖr¡.2XḄ3ᦪᑡ"X᜻ᦪ-1)x(—2)=21—nXᏔᦪ=஺2+e.1)x(—2)=9—஻[21—஻஻X᜻ᦪ19.஻஻XᏔᦪ.(2)S2"=4]+a2H---\~Cl2n=(0+a3H---F஺2஻-1)+(a2H---1-஺2஻)

122,n(n-\),.n(n—1)=9+29(-2)+஻⁐+2²(.2)=.2/+29³¢ᔠ´µ¶ᦪḄឋ¸qV஻=7ᨬᜧ.4.(2015ᓭºST)UVᦪᑡ4஻X3ᦪᑡ✌⚗»=1,d¥0.¢/஺᝞஺᝞…K?஻…ᡂ34ᦪᑡZ"=1,ᔊ=2,b=5.3(1)ᦪᑡ/%Ḅ⚗¤(2)`½=log3(2¾.1),஻=C1G—C2c3+C3C4—C4c5H---H1.஺2”஺2/1+1Ḅ.3஻.+1cdef'পᵫUV(1+জ2=ix(l+4c/),ÂÃd=2,q=3,ᵫÅÆKÇ=.;(2)ᵫÈ=log3(2b஻-1)=஻.1,T=C(C1-c)+e(C3-C5)+cdc-c)H---|-Ê2஻(஺2஻-1.஺2஻+1)=n23457—2(C2+C4H----FC2,I),ÆKT.n'(1)•ᦪᑡយX3ᦪᑡ✌⚗Ì=1,d#0.ab\Ã2,Î,…ab”,…ᡂ34ᦪᑡZÏ=1,b=2Ð=5.929+.c^=aaA(1+6O2=1X(1+4J),v5tl+2d+/=l+4d,d=2ᡈd=0(Ô)cib\=t/j=1,a/72=3.q=3,Î=1+S“-1)X2=2ÐÖ1=1X3"T,3n-l+l♦♦b”—2,(2)c=log(2Z>„-l)=n-1,ffl3

123஻=C2oC]-C3q+04oC3—Cq+"…+-4÷n—1n

124=2—~<2,n'+.b<2.n6.(2015•☘úST)`r3ᦪᑡûrᔜ⚗sXý᦮ᦪḄ34ᦪᑡZ஺ðÐ=13b2=50,48+þ=஻3+44+5,.(1),ÿ஻Ḅ⚗;(2)ᦪᑡ44+1=0)—8+log26”+i(஻eN*),!4=16#$%&4Ḅ⚗'ᐸ)n⚗*S„.+,-./(1)0&4Ḅ12d,&জḄ52q,ᑣ8⚪:ᨵq>0,ᑭᵨḄ3b2=50,஻8+B=Ḅ+஺4+5,ᑡDEFG#%H1I5#ᯠK%H⚗.(2)ᑭᵨᐵNODP=),Qᑮ&d”Ḅ᜻ᦪ⚗IᏔᦪ⚗ᑖVWX5ᦪᑡY%D⚗,ᯠK%H)஻⚗*S”.H/(1)0&2Ḅ12"#&\Ḅ52q,ᑣ8⚪:ᨵq>0,[(1+126/)9=50,!V[(l+70+q=(l+24+(1+34+5,[(1+12^=50,ᓽV[2d+q=6,

125d=2,HQ:ᡈf4=2,25Id=2,ᵫi&\jWᔜ⚗l2m᦮ᦪḄX5ᦪᑡ#ᡠp14=2,qra=1+{n—\)d=2n—1,b„=q"~'=2n~'.n(2)*.,fe„=2/,lOg2Z>„+l=7J,=yz"#d஻+]d஻+2{|◀/"~ᵫ4=16,4஺2=y5/1=128,Q/4=8,•*.,"3,஻5,…Wp4=162✌⚗#p§25ḄX5ᦪᑡY4,#…Wp4=82✌⚗#pa25ḄX5ᦪᑡ#/.஻2᜻ᦪ#d஻=16Xy/"21=16yy”#S?=y4+d3H---bd஻+y"2+d4H----©d5i8

126S=(d\+ᡧ+••+d—\)+(d2++…+)=nn(9+16[1-ᵪ]=48-48)",48-32”2᜻ᦪ,48-48஻2Ꮤᦪ.{ᜧ⚪Ḅᑖᝯ{ᜧ⚪Wᦪ*ᙊ┵¡¢#£¤ᜧஹ¦ᔠឋ©#ªQᑖ«¬᧕#®⌕Qᑮ°±²³Ḅᑖᦪ´WᨵEµ±¶Ḅ.

127·ὃW⌱ºឋḄὃ$#»¼W½¾ὅḄÀÁ#ÂmḄ·ὃ·ÃWᚆᯠḄ#ÅÆÇQᨵÈÉᨵQḄÂm⍝ᳮ#☢Í·ὃᜧ⚪#ᱯVW⚪#ÏÐÑÒÓiᒘÈ#ÏÐÑÕÖÁª.×ᦟÙÚ#ÛÙᙠὃ$Ý°±²³QᑖஹÞQᑖ.ᶍ1,¡¢uhᓄ¤`¥,¦§¨©ª¨©᝞à⍗ᑮâãä£Ḅå⚪#æçᖧ«é#âêëḄH⚪ìᶍW#îïÆᑖH2NᑡḄðñ#ᡈὅWââòå⚪#ᐜHôå⚪Ḅõᑖ#²Hô³ö÷Hô³ö#²øùúð÷ᑏúð#üýᡂÿᜫ.ᱯ⚪Ḅ⚪ᡈὅᓄḄ!"#ᑖ%Ḅ&'()*#ᑖᨬ,-./ᯠ1#23ᑖᦪᓾ6789“ᜧ⚪<=ᑖ”.22?ᐺA1(12ᑖ)CDᙊCF?+5=13»>0)ḄGHᯖ%ᑖJFi(—1,0),&(1,0)KDᙊC6%L©,1).(1)PDᙊCḄQR᳛T2(2)U6%A(0,2)ḄVW/YDᙊ஺[M,NG%%QW\MN]Ḅ%K^^=a2+dP%஺Ḅef•?⚪hYjᑖkᑣm(1)ᵫDᙊopC2a=\PFi\+\PF\=21q+1)+—+1s!t+8uᖾ,

128ᡠ*°=ᖾ.2ᑖyᵫCc=l,ᡠ*DᙊCḄQR᳛e=a=^=2-4ᑖ2}2~ᵫপC,DᙊCḄJ~+y2=l.U%஺Ḅᙶ᪗J}x,y8.জVW/YxᚖVVW/YDᙊC[}0~}0,!1~G%%஺Ḅᙶ᪗J}0,2!.6ᑖঝVW/YxᚖVUVW/ḄJy=kx+2.JANᙠVW/])U%M,NḄᙶ᪗ᑖJ}Hi+2~,}x,2+2~,ᑣ|AM2=}1+ᯠHN|2=}1+.yHQ|2=+}y—2L=}1+~f..2_1,1rᵫ£!^Fᓝ^¦§2-=_+_}1+Zr~x~}1+!c}x\}1+k~8x2'p211}X!+X2—2XXGo¶o2]2ᓽ7=¯+°=!ᓅ!•জ8ᑖ·y=¸+2¹ᐭ5+~?=1½#}2+l~x?+8¾+6=0.ঝ

129得必-3>ᵫ/=(82)“!4p(2Á+l)X6>0,2ᵫঝ)CG+ᜐ=2/+m,Äᙠ2=2ᡝ+m1Q¹ᐭজ½ÆᓄÇ#¥=ᐗᓃ.ঞ9ᑖJ%QᙠVWy=fcc+2]ᡠ*k=J1,¹ᐭঞ½ÆᓄÇ#109-2)2-3x2=18.10ᵫঞЯ)C0a2<|,ᓽxw(!ᙶo)u(o,ᙶ)y(0,2—ÕÖ10(y—2-3J?=18,ᦑxG(!ᙶᙶ^ᵫ⚪ØQ(x,y)ᙠDᙊCᑁᡠ*!iWyWl,yᵫ10஺-2)2=18+3x2ᨵ஺-2)2ea?K!iWyWl,ᑣ2-Ýmᡠ*%QḄefJ10(j'—2)2—3x2=18,ᐸ½(!ᙶᙶ))e(j,2—&ᑖᨵ)(1)á⚪â(1)ãJCDᙊ᪗äPDᙊḄQR᳛ã⚪åæ᧕⚪.(2)á⚪Ḅè%ᙠâ(2)ã½éoefнᔜëìḄíîïá⚪ᨵ!oḄèð⌕ò=ᑮᐰᑖõè8ö÷øùúû"ü.

130✌ᐜÿᙊ┵Ḅᐵ⚪◤⌕ὃ⇋Ḅ᳛ᔲᙠ/Ḅ᳛"ᙠ#$%QḄᙶ᪗)*0,2—ᖂ1.34ὃ56789ᑮḄ.ᐸ<ὶ>?ᙊ@$N,஺Ḅᙶ᪗'CDE3=EH?+.3'Kᑮ5=*+2=N~*~ᯠQᵫᑁ+*2TUVὶ1QWXᐗZ<᪷ᦪḄᐵ]⚪^_ᑮ=`ᐰbc9ᑮḄᑮdebcKᑮ9ᑖ.h᜜ὃ⇋ᑮ%Qᙠ/j]%Qᙶ᪗kᐭᡠn8Kᑮ10*1-212—3f=18,ᑮsbcKᑮ10ᑖ.ᑮ"8tuvw^ᡃyzdeKᑮ{ᜧ}ᑖᑖᦪ~.%᝞஺)ᙶ᪗%?ᙊG᜛+5=1*஺01Ḅஹᯖ%ᑖ)Q,F,᳛2fv2)C2/X$=1Ḅஹᯖ%ᑖ)3,ᔣ᳛)02.deg=¥24l=$&1.

131প#GC2Ḅ;ফDQ¥CiḄ"ᚖ¨yªḄ«AB,®)ABḄ¯%0MC2±¨P,஺U%#³´µAP8Q☢·Ḅᨬ¹º.^⚪»½ᑖ¾ᑣ¹À)Áa.).X/ÄᧅÆA/3(1))ee=),ᡠc=)t2ᓽ“4X/=Ê4,“2=2/,2ᑖËÌ2(Í0)4(S80)¨¹6—6=Ð2Ñ=¹X1ᡠcb=l,cT=2.22ᦑG,C2Ḅᑖ)1+y2=1,y—y2=1.4ᑖ(2)A8"ᚖ¨yªD%Ó(-1,0),ᦑbA8Ḅ)x="?y—1.

132x=my'-1,ᵫK(¹+2)/X2,ÖX1=0.5ᑖ᱇+/■=1᧕ḄᑨÛᜧ¨0.A(xi,y)8(a),2),ᑣM)2jÜḄUÝÞ᪷,~.2m—1ᡠc,+)2=ß)à=⃬âX4X|+X2="?(yi+”)-2=æç¨ABḄ¯%)M(éç)6ᑖᦑP஺Ḅ᳛)X᜛PQḄ)Xêᓽn?x+2y=0.7ᑖ

133K(2—=4,,2ᡠc2f2>o,ᐭ[Dy2=^ËÌ|PQ|=2yjx-+y=ᑖ%/ᑮPQḄî)d,ᑣ%Bᑮ஺Ḅîz)d,|6M+2yli+|6ï2+2%|ᡠc24=y1m+4)%48ᙠmx+2y=0Ḅðñ,ᡠc(ÍXi+2yJ(/77M+2J/2)<0,m+2|yi~/2|¨|ôõ+2õ|+1777x2+2/21=|ôÍ+2%—RM—2%|,ËÌ2d=yjm+4ö)1i1Zõ+s-4÷=2ᖾ3ᑖ2\[2•71+-ᡠc2d=H—.11ᑖ7m+4ᦑ³´µAPBQḄ☢,6=?|&2|♦2.ù72-m

134Ì0<2Xµ2W2,ᦑm=0SûKᨬ¹º2.üjᡠܳ´µAP8Q☢·Ḅᨬ¹º)2.12ᑖᱯþ⏨⚪ᨵ⌕ᑮᐰᑖ.ᙠ(2)!⌕"#$%APBQḄ☢,Ḅᨬ./⊤12ᐸ☢,ᐸ4ᜧ6789:;<=>?ᙊ<=ὶBCᓄEᐵGxᡈ)ḄᐗK8<=ᵫ᪷NOᦪḄᐵOQRSTU"2PQSVWXYZ[ᡂḄ.ᓽ^ᒕ`ḄaᐰbcdὃXfg9ᑖij.ᶍ2«¢uh¬⌾¯°§±x§±x⚪k=!ᓱᙠmkno⁚qVrsḄ.tᡃvgwᐜyz!{|}~Yᔲᑮ|}.6⚪ᨵ7(1)2ᩭg9(1)“”ᐜ(2).᝞ᐺ2(12ᑖ)ᦪ(x)=x"+Z?x+c("eN*,b,ceR).(1)஻N2,b=\,c=-\,¤¥%(x)ᙠ§{(¨1)ᑁªᙠ«¬¨(2)”=2,6®¯°ᑴᓾ³1,1,ᨵ´(µ)ᕒ(X2)|W4,"஻Ḅ»/½¨(3)ᙠ(1)ḄᩩÀÁÂV£(x)ᙠQ,1)ᑁḄ¬ᑨÅᦪᑡÇÈ…/…ḄËÌឋ.⚪ÎNÏᑖÐᑣ(1)¤¥b=\,c=~\,஻22tf,,(x)=x"+x-1.

135,"(Ò1)=9-£)X1<0,.•.<ಘᙠ(¨1)ᑁªᙠ¬.2ᑖÕxG$1)t/„(x)=nx,,-1+l>0,.\A(x)ᙠ1)qVᓫ×⌴ËḄ...6(x)ᙠ§{(3I)ᑁªᙠ«¬4ᑖ(2)஻=2tf(.x)=+c+bx+c.2®¯°X,Ù^1ÛÜᨵឍ(ᑴ)஺2)1/4ßàG(x)ᙠ-1,1qḄᨬᜧ/Nᨬ./âãMW4.äåᑖæç}᝞ÁA--জ2>1,éê>2t,Ò=ᔊ(1)í(1)1=2î>4,N⚪ïð.6ᑖঝ1Wᩩ0,ᓽ03W2t6--1஻=(1)ឤᡂB.7ᑖ2;ঞOW-gWl,ᓽ2W8W0tÒ=(-1)<()=©—1)2.4ឤᡂB.öqg-2<6<2.8ᑖ

136ᦑ஻Ḅ»/½E[-2,2].(3)ùxVOᙠ(¨1)ᑁḄ«¬(஻22),nú(ᓽ)=ὡ+ü1=0,,fn+1a஻+1)=ú஻+1+ý1+1-1=°,ᑍ஻+)£Q$1)$GVᨵ«஻)=o=%+1a஻+1)—ú஻+1+x஻+1-11+x”+1-1—1(ú஻+1)•Õᵫ(1)ú(X)ᙠQ,1)qVᓫ×⌴ËḄᦑx஻-(2).:?@ABCDEFGᡈIJ:KLMNOPJQ-(3).Ḅ

137-(2).]ᨵ_`ᐵb>[-(1).dᐵḄefgh᧕0)[ᱥ஺2y2=2axdA,8eᯖᔠ.(1)CiC2Ḅ;(2)ᙠᙊVxḄ¡¢£¤ḄC,D,¥¦஺=|8஺|,§C,஺ᐵx|¨©(3)¥oᯖ/Ḅª/[«P,M,N,஺ᔲ7ᙠ¯᳛°4Ḅª/±ᐸ³´|/W|=2|MQ|?¥7ᙠ¹kḄ»©¥E7ᙠ¼½ᳮᵫ.{<⚪¾[ÀᑖÁᑣপj°C”C2ḄᯖᔠᡠÃÄ3='Æa>0,ᡠa=2,22jkG2~=1,஺2)?=42ᑖ

138ᜧ=1$%2&ὶÊCi,C2Ḅt‘y=4x,

139,..16,8A/2XI+X?—ᵫᓽ+Ãߟ7+r-----5,r-----5Ḅ»Eឤ°J\4—Xi+^4—A2ᡠX1—X28ðᓽX|=X2,kL&$1=&%jkC%X1,ÍÎ0%X2,ÏÎᐵX|¨.8ᑖ3Ꮇ7ᙠ¯᳛°kḄª/±ᐸ³´|PN|=2|MQ|,ª/Ḅ°y=Ax—1,,[y=Ax—1,ò^=%஺-1[y-=4xὶÊõ2[V=4x,ö÷ytø/Ò2ù+4ú+û=0,¬…4—M+1I——.41+üήrIPM—71+ý=\h22஺=ឰ—1,òy=Z%x_l&[õ+V=]ὶÊjp+V=]ö÷Ît3+ÿ2&/8X+4F-12=0,|஻஺|=.11ᑖ“41+F121+|PN|=2|MQ|,ᑣ³;2=-3³7/X2,=±.

140ᙠk=±^ᩩ!.12ᑖIᱯ&'⏨I)⚪+(2)./01ᜧ3ᡃ5678+(2).9:;+(3).=>?ᡠAḄ7CD=᪵FᯠHIJ+(2).3+(3).K᪵6ᑮMNḄᑖᦪ.ᶍ3⌮ᔣuh⌮·¸¹ºº"¦x⚪PQ.⚪☢SὃUVSWXYZᵨ⌮ᔣSWḄ^_`a;bḄ⚪⌶deeIᑮfẚឋḄij.kᔣlᨵn/>⌮l9:oᨵn/>po.qᐺs3t(12ᑖ)uvx)=x1nx,g(x)=-x2+ar-3.(1);~ᦪy(x)Ḅᨬ(2)Pᑗxe(O,+8),஻(x))g(x)ឤᡂ;ᦪaḄ12(3)oPᑗxd(O,4-00),ᨵlnx>£ᡂ.q⚪ᑖᑣt(iy‘(x)=lnx+l,1ᑖxG(0,3ZfW<0./)ᓫ¥⌴§xcQ,+8)Zf(-)>o,¬x)ᓫ¥⌴Aᡠ6®c)Ḅᨬ¯53ᑖ30(2)2xlnx~+ar—3,ᑣaW21nx+x+?

141ஹ3µh(x)=2

142x+x+~(x>0),,.(x+3)(x—1)ஹᑣ஻(x)=-----p----4ᑖজJV£(0,1)Z,h'(x)<0,஻(¸ᓫ¥⌴§;ঝx£(l,+8)Zhf()>0,/z(x)ᓫ¥⌴5ᑖxᡠ6஻(X)min=h(l)=4.¾¯Pᑗx£(0,+8),¿r)2g(x)ឤᡂᡠ6஺W஻(x)min=4,ᓽ஺Ḅ¯(8,4].7ᑖ(3)o.⚪ÃÄÅoxlnfÇ■!(Ê£(஺,+8)).8ᑖᵫ(1)Ì)=xlnQ£(O,+8))Ḅᨬ?9ÎÏÊ=3Z.9ᑖ21—xIµ,7?(x)=£(xG(O,+°0)),ᑣ(x)=-^᧕஻©)Ó="?(1)=-3ÎÕ~ᦪÖ×KZØx2ᡠ6ᨵxlnx>p—~,11ᑖ12ÙÚPᑗx£(0,+°°),ᨵInQᨬÛᡂ.12ᑖ&ᑖᨵ)12T2D)⚪+ব.ᑭᵨÞ⌮ᔣDßÖÃàlnx>áEãᝯᙢæᓄ¯xlnx>*£ÖÃCvACC

143àëì?«T),ïìðñQbḄ~ᦪm(X),ò◤ôy(X)min>஻?(X)maxᓽ.1Páõöt117uᦪᑡøùú+1=û஻+üᨴ."=t7஻¯øùḄþ஻⚗.(1)ᦪᑡᦪᑡ“Ḅ⚗(2)᝞!஻GN",Q0,*27"+3+2-10472+4"+5ឤᡂ2,3ᦪkḄK568.9:⚪<=>ᑖ@ᑣBপ!“GN”,EᨵG+i=*?஻+,ᡠM%+i—9Q஻)3ᑖᑣSTᦪᑡ✌⚗S"£=3,S4ᑖᡠM/?„—1=3XZ1,[\3X()”"+/5ᑖফ^S==3+(_3(T)ᡠM7B,=31+|+id---FJr+3=----->+S=6(l-D+S7ᑖ1-2ᵫ⚪m*27“+3no஺q+4஻+5,’2-I-2ᓽuvw!஻GN*ឤᡂ29ᑖ

144n+21%,11ᑖxF+4"+5—஻+2d1n+2ᑣu◤ᦑkḄ568S9|+°°j.l2ᑖᶍ4»⌨¢uh½⌨A¾ᑡBᐵᑁÀ"¦ᑖ“M⌨”⌕Ḅ:⚪ᶍ.Ḅ⚪᝞*:ᡠQḄ⚪M⌨ᑮᱯ⌨ᑮᐹᩖ⌨ᑮᓫ᦮⌨ᑮᑖ¡¢⌨ᑮ£¢¤Ḅ¥¦⌨ᑮ§Ḅ¥¦.¨©⌨ᑮª:Ḅ⚪«“ᱯ”Ḅ¬ὃ=:®¯¬°±ᑮ“”Ḅ:.9ᐺ³4B´12ᑖµ᝞¶஺Sᙶ᪗¹º,»¼½G,-*=1´©>0,¿>஺µÀᙊC:+^2=1´«2>^2>0µ2ᙳ«ºÇÈ1µÉMClḄÊ⚔ºC2ḄÊᯖºS⚔ºḄÍÎÏ☢ÑS2ḄÒÓÏ.

145(1)CiC2ḄÓÔ(2)ᔲÖᙠؽI,ÙÚI=GÛA,Bʺ=C,ÜᨵᐳºÉIOA+CB|=|AB|?ÞḄ¥¦.9:⚪<=>ᑖ@ᑣB(1)ßGḄᯖàS26ᵫ⚪!m2Q=2,2a,=2.áᓰ1=1,6=1.ᦑG,CḄÓÔᑖãS222X—y=1,§+|=1.4ᑖ(2)*Öᙠäᔠ⚪ßᩩçḄؽ.5ᑖজéؽ/ᚖØxë^S/=GÜᨵᐳºᡠMؽ/ḄÓÔSx=/ᡈx=í

146îஹ=/᧕m¿ᖾ®8oᖾ=8,ᡠM|ó+55|=2ô|õ|=2ö÷|ø+ù|¥|ûI.î7=—Íüᳮm|5X+ùI#|õ|.7ᑖঝéؽ/*ᚖØxëß/ḄÓÔSy=kx+m.y=kx-\-ni,ᵫ“y23—ᯠ3—2k7a3=0.7K3=1/GA,BAoxi,y8,8X2,/qᑣM,Ḅ"#t᪷%&+x)*…,-.,.3d0312y1”=+ᦇ5ᓽ+78+"?2=:<039ᑖy=kx+tn,ᵫ,]27+38/+4᝞a+2W06=0.EFGH/C2Jᨵ0"LᐳᡠOḄᑨQR/=16<஻2-82᮱+38W—38=0.ᓄYZ=27+3,10ᑖ

147E[OA,஺6=7172+»i»2_m~+3.-3m2——p—3=I^3k2-3=k2-3]2+^2+2_.OB^OA2+OB2-2CM•OB,ᓽ|a+^|2#|30^|2,ᦑ|3+^|7|c|.dᔠজঝhijkᙠmᔠ⚪ᩩpḄGH.12ᑖ&ᑖᨵ)ᙠqrs(2)thuᵨ⌨xryzj{|}ᑨ~ᐸGHᔲkᙠGHᚖGxᡠḄ%0ᑮᱯ.^2᝞ᙊG*2+),2=ᔣ3ᙊ஺2+¡=1A,B,C,஺£A”A2ᑖQFC2Ḅ¤¥⚔.(1)tF¨©ª«ABCDḄ☢®ᨬᜧ©±²q³ᐸᨬᜧ☢;(2)qGH44|GHABMḄµ¶.2

148r⚪·¹ᑖºᑣপA(¼y),ᑣª«ABCDḄ☢S=4|x||y|.lᑖ0n022由&2&3分9"9J从而,9,1ᓽ=5Á=2Smax=6.%&f=Wª«ABC஺Ḅ☢ᨬᜧᨬᜧ☢F6.5ᑖফM(x,y),ᵫA(xo,%)B(xo,0É)A|(—3,0),A(3,0),iGHA4ḄF)2=t#^(x+3),জ6ᑖGH4BḄF>=Î^஺-3).ঝ7ᑖᓽ0J2ᵫজXঝ¡=Ð(¥-9).ঞ9ᑖ2Ó4¼%)ᙠᙊCᦑ/=10Ô.ট2Öট×ᐭঞÙ0"1(x<-3,><0).11ᑖ2E[MḄµ¶F0/=(x<—3,)<0).12ᑖᱯQÛ⏨s(2)t⌕qMḄµ¶j᧕qrὃàhOᑭᵨ«Ḅâឋ

149³4ஹBḄᙶ᪗çᵫRhᑏ³GH.é᪷ê«ᡈ⚪ìᑏ³0íḄᙶ᪗ஹஹLRᡈ|}ïḄðFñòryðóôõö▅ᔁὁú0ûüõᑖ.hÍÎu⚪f⚗FÍÎu⚪f⚗F(h)Hᦪ8Ïᦪ(h)1.(2015•þÿ)x=l/(x)=2x+§+lnxḄ᩽.(1)6Ḅ(2)ᦪr)Ḅᓫ⌴!"#3ব&g(x)=Xx)-p+,-(2,5)0123ᩩ56786)9=g(x):ᑗ<=>?ᳮᵫ.BCDE(1)ᐜG/(x),Iᵫx=l1x)=2x+J+lnxḄ᩽9K(1)=0,ᵫMNGb.(2)ᵫ/(x)=2—+EV0,KQ7~<0,IUᔠᦪḄWXYNGᦪḄᓫ⌴!"#.3(3)^(x)=y(x)—\=2A+lnx,&-(2,5)Ḅ86g(x)Ḅᑗ6Ḅᑗᙶ᪗`(a9ᐝ)9ᦑ2x°

150+lnxo-5=(2+9Eo—2),ᵫMNfghG-(2,5)012ᩩ56786ig(x):ᑗ.jE(l)Ex=l/(x)=2x+§+lnxḄ᩽,+.f(1)=0,ᓽ2—l+1=0,.•2=3,nop9〉ᔠ⚪s9:.b=3.31(2)ᵫ/a)=2_7+f<0,„2r2+.r—33zy7!<0,?•—20(WXY)9.•.ᦪḄᓫ⌴!"#`(0,1).3(3)^(x)=/(x)—~=2x+Inx,&-(2,5)Ḅ86g(x)Ḅᑗ6Ḅᑗᙶ᪗`(xo,%),.yo~5/(ஹ•2g()’ᓽ2m+111o5=(2+§(ᵨ2),/.Inᑠ+2a\5=2x()—3——,Ḅ

1512.•.lnx<)+—-2=0,ᓽ2/i(x)=lnx+~-2,h'(x)=H=0,+.x=2.ᙠ(0,2)ᓫ⌴!9ᙠ(2,+8)ᓫ⌴9V/i©=2-ln2>0,/i(2)=ln2-l<0,/i(e2)=J>0,+h(x)¯xᨵ9-(2,5)012ᩩ56786y=g(x):ᑗ.k(x—1)2.(2015)ᦪx)=Inx,g(x)=v<(1)k=e9ᦪ/7(x)=/(x)—g(x)Ḅᓫ"#᩽(2)x)g(x)ឤᡂ¡9¢ᦪkḄ.BCDE(1)¤Z=e¦ᐭᦪj᪆©9GᦪḄhᦪ9ᵫhᦪḄª«KᑮᦪḄᓫ"#9®KᦪḄ᩽(2)Gᦪ/?(x)Ḅhᦪ9஽W09ᵫᦪḄᓫឋUᔠ/?(1)=0,0%(²)20³ឤᡂ¡9k>09ᵫᦪḄᓫឋGᦪ஻(x)Ḅᨬ¶9ᵫᨬ¶ᜧ¸¹¸0KkḄ.jE(1)ᦪº)ḄWXY`(0,+8),k(x-1)h(x)=Inx-------(x>0),

152»e9h'()=:'=¾¿9OVxe,ᑣ(x)>0....Á(x)ᙠ(0,e)ᓫ⌴!9ᙠ(e,+8)ᓫ⌴9ᦑ/z(x)min=/i(e)=2—e,ᦑᦪ஻(x)Ḅᓫ⌴!"#`(0,e),ᓫ⌴"#`(e,+8),᩽¶`2—e,²᩽ᜧ.(2)ᵫ(1)()=:-%=Â9KW09(x)>0Ãx>0ឤᡂ¡9(0,+8)Ḅᦪ9Äsᑮ%(1)=0,.♦.OVxVl,஻(x)<0³ᔠ⚪s.Å>09OVxVA,h'(x)<0:x>Æ9h'(x)>0.(0,%)Ḅ!ᦪ9Ç,+8)Ḅᦪ9ᦑÈ◤஻(x)min=/?(%)=lnk—*+120.H(x)=lnx—x+l(x>0),OVxVl,u'(x)>0;x>l9u'(x)<0..♦."(x)(0,1)Ḅᦪ9(1,+8)Ḅ!ᦪ.

153ᦑ“(x)W“(l)=OÌÍx=l¹«ᡂ¡.9ÌÍk=\9Ḅ20ᡂ¡9ᓽk=1`ᡠ.3.Ï)=Ð+Ñinx.aGR.পa=0,ᦪy=/(x)ᙠ(1,Õ1))ᜐḄᑗ6×Ø(2)ᦪᐔv)ᙠÚ1,2Û!ᦪ9¢ᦪaḄÜÞ(3)g(x)=/(x)—ᔲàᙠ¢ᦪ¶xG(0,eÛ(eáᯠÃᦪḄãᦪ)9ᦪg(x)Ḅᨬ¶3?àᙠ9GaḄ³àᙠ9=>?ᳮᵫ.BCDE(1)ᑭᵨhᦪḄåæsXᑗ6×Ø.(2)ᦪᙠÚ1,2Û!ᦪ9çᓄ`hᦪᙠÚ1,2Ûឤ¶¸¹¸0.(3)ᐜᎷ&àᙠaḄ9hê᪷ì஺7"#îḄᜧ¶ïðᓫឋᨬ.jE(1)a=09y(A-)=^2—lnA-,f(x)=2t—(1)=1,|ᵨ)=1,ᦪiᓻ)ᙠ(1,©1))ᜐḄᑗ6×Ø`x-y=0.(2)Vᦪᓻ)ᙠÚ1,2Û!ᦪ9+.f'(x)=2x+,T=2''"ô:W0ᙠ,2Ûឤᡂ¡.JW)W0,h(x)=2x'+ax—1,ᵫjÚ஻(2)W0,aீ±

15471T...“W-ᓽ஺ḄÜÞ`ö8,--.Iox—1%3&Ꮇ&àᙠ¢ᦪ஻9÷g%x&=or—Inxᙠ%0,eWḄᨬ¶3,g'M=a--=—^—জ“W09gr%x&0,,g%x&ᙠ%0,eWᓫ⌴!94$gQ&min=g%e&=4e—1=3,jK4=&%ùúû.ঝö2e,ᓽOvaW'9g'öýûþ0ᙠ%0,eWឤᡂ¡98஺ûᙠö0,eWᓫ⌴!94ga&min=g%e&=ae-1=3,jK஺=ÿ.ঞᓽg$%x&vO,04,%x&0,.•.g%x&ᙠ%0,5&ᓫ⌴ᙠeᓫ⌴g%x&min=g%&=l+lna=3,a=e2,ᩩ.ᡠᙠ!ᦪ஺=e&$g%x&=./U&—x2ᙠ%0,eWḄᨬ'()3.4.%2015ᒹᜮ,-./0ᦪa,/?eR,140.%1&a=2,b=l,30ᦪ4Ḅ᩽(;

155(2):g(x)="(x—l)e'—/(x),Dᙠx>l,$g(x)+g'(x)=0ᡂI3ḄJ(L.MNOPQ(1)3S஺=2,b=lḄ0ᦪ./(X)ḄVᦪ3ᓫWX3᩽(Y(2)3Sg(x)ḄVᦪᵫ⚪\]ᙠx>l,$2a?—30r2-2"+஺=0ᡂI.ᵫa>0,,b2x3—3x2nᑣL*F$2x3—3x2:(x>l),3SVᦪᑨeᓫឋᓽ]ᑮᡠ3L.Q(1)஺=2,6=1ij=(2+5lmnop(q8,0)0(0,+«>)...~(x+l)(2x--1e)..ᡠu/0)=1q7-----(x)=0,X]=-1,x=5ᑡ⊤X(—8,-J)-1(-1,0)(o,912&+8)f'(X)+0qq0ᓝ./M᩽ᜧ(᩽'(ᵫ⊤/4)Ḅ᩽ᜧ()7(—1)=ᓰ4)Ḅ᩽'()£)=4(2)pga)=Qu—ᡠug()=¥+஻_§q஻.ᵫg(x)+g'(x)=0,

156᦮ᳮ2u3—Bar?-2/?x+b=0.ᙠ>1,$g(x)+g'()=0ᡂIᙠx>l,$20r3——2"+/?=0ᡂI..b2x3-3x2p஺>0,ᡠu==F---1.alx—12x3-3x2:w(x)=(x>l),8A[(A-1)+4ᑣ(X)=ߟ(2v—l)2q•px>l(x)>0ឤᡂIᡠu஻(x)ᙠ(1,+8))0ᦪᡠuu(x)>u(l)=-1,ᡠu2>—i,bᓽZḄJ(Lp(ߟ1+°°)-ÍÎu⚪f⚗FojqHᦪ8Ïᦪojq1.2015•☘,-/0ᦪᐔ0=1—+1஺஺p!ᦪ.1஺=130ᦪᜐḄᑗ¢£¤;

157(2):0ᦪ/2(")=3஻-2/(ᐸ¦2p§ᦪ)D0ᦪV)ᙠWX(0ফªᙠ᩽(1ᙠa/?—+23«ḄJ(LYOMNOPQ(1)ᓄ®0ᦪḄ᪆3S0ᦪḄVᦪᑭᵨᑗ¢£¤Ḅ3²3S³᳛ᑗOᙶ᪗3ᓽ].(2)·¸/(x)=03S᩽(Ox=a,ᑭᵨ0ᦪx)ᙠWX(0,2)ªᙠ᩽(ᑮaḄ18448Lᯠº»ᓄᩩp6(a)max2+6,জ2W0ᡈÀঝ0<4ঞ'஽WᑖOJJJJÅ3MGmax,ÈSÉḄL.Qপa=l4)=1qY+Ë,f(x)=^7-pᑣ6)=4-2=2,Î=1-2+ln2=ln2—l,0ᦪ/(x)ḄÐÑᙠO(J,ᜐḄᑗ¢£¤pQy—(In2—ᓽ2x-y+ln2-2=0.,a1a-x.,(2V(x)=p--=-^r-,ᵫ/(x)=()=>x=a,ᵫ0ᦪ4)ᙠWX(0,2)ªᙠ᩽(ᡠuaWOᡈ஺22,ᵫᙠa/?(2+|,ᡠu஻(a)max>+W3-Õ0ᦪÉ(஺)=3஻-2a஺ÕÖ×a4

158জØÙ0ᡈ¦j2,ᓽ2W0ᡈ22Ú6(a)max=஻(%)=Ü2,1Q1Q1Qᵫ/?(a)max22+d=E2~22+dßᔠ2W0ᡈ22]]QNW—ªᡈ225YoooJyjঝOvW1,ᓽ/z(஻)max=஻(O)=O,114ᵫ஻3)maxji+d=022+dßᔠ0ÙiWf]/QåªᙠYooJঞ1Ù^Ù2,ᓽæÙ|,/z(a)max=஻(2)=6çq8;1148138ᵫ஻3)max2/+d=62—822+dßᔠWÙ⊟7]/Qk□ooJjoJ]/Q7ḄJ(Lp(q8,—1(Jë+8).2.(2015•ìí,-)./0ᦪ᜜)=᜛+InX.পDy=/(x)ᙠx=lᜐḄᑗ¢Ḅ³᳛p/3ð)ḄᓫWXY(2)D./)=0ᙠñe2,e»ាᨵõö!᪷1᝞q஺ùᙠú⌨2ឤᡂI3!ᦪ஻?ḄJ(L.MNOPQ(1)30ᦪḄVᦪ᪷ü0ᦪᙠx=lᜐḄᑗ¢Ḅ³᳛pýI£¤ᐵÿᓽa_/(x)Ḅᓫ.(2)᪀⌼ᦪᦪḄᦪẆᦪḄᨬᓽ!ឤᡂ$%⚪.

159(পᵫ+)=%+lnx1/஺)=34+:,7y=/Wᙠx=lᜐḄᑗ=Ḅ>᳛@3+.f(1)=-2a+l=1,1a=Z,ii2x2—1ᓽ/W=--2?^-7=2x3஺>°)ᵫ/(x)>01x>Kᵫ/(x)VO1OVxVᳮᓽᦪḄᓫ⌴P@(0,Q)ᓫ⌴R@S+8)ফᵫ+)=01?+lnV=0,1஻=—/YZᙠ[32,\ᡂ$,]g(x)=_x2lnx,ᑣg'(x)=_2xlnx-x=_x(21nx+1),ᵫg'(x)=஺121nx+1=0,1x=e—(,cxdee-2,e-§gg'(x)>0,cxG(e_9e2j,g'(x)<0,ᦑg(x)ᙠWieஹe—g)\ᓫ⌴Rᙠ(e—e?j\ᓫ⌴P,

160ᦑg(x)ᙠee-2,e?j\Ḅ᩽ᜧ@g(e3p/qg(e7)=3,^(e2)=-2e4,sᯠg(e~2)>g(e2),ᦑaḄuwxyz{஻(a)=|3a,a£3,´,ᑣ"জ31,{஻(a)=0,1a=(>!ᑣa6ey@g"(”)ு஺ᦑ6(a)ᙠ\ᓫ⌴Rᦑឰ)Ḅᨬ@஻ম=#3஻c4Z"/33m+e?y/22ᦑ◤⌕------ᓽᵨ2—3஻?+2V0,11V,஻V2,ᓽᦪḄuwx(1,2).3.(2015□)ᦪ«1)=%\g(x)=elnx.(1)]ᦪᨴ(Z)=஺38(%),F(x)Ḅᓫ;

161ফ7¡ᙠ¢ᦪ&,஻?¤1ᓻ)¦§+p,¨xGRឤᡂ$,©g(x)Wª+”"¨xC(O,+8)ឤᡂ$ᑣ«¬=+s@ᦪ/)®g(x)Ḅ“ᑖ±=”²%(³)®g(x)xᔲ¡ᙠ“ᑖ±=”µ7¡ᙠ“ᑖ±=”Ḅ¶·7¡ᙠ¸¹ºᳮᵫ.»¼½¾((1)ᙠ¿ÀÁᑁ!(x)>0,P(x)VO1ᦪḄᓫ.(2)ᵫ(1)cÃ=/gF(x)u1ᨬF(#)=0,ᑣt)®g(x)ḄÄÅᙠÆ=pᜐᨵÈᐳ½(ÊᎷ]!x)®g(x)¡ᙠ“ᑖ±=”ᑣᐸÍν(Ê1ᦑ]ᐸ¶·@(y-f=ᵫᐔ¥)2+3KÒ¨ឤᡂ$1k=y[eᑣ“ᑖ±=”Ḅ¶·@(yf=&x—|.◤⌕Óºg(x)0/Ô3]¨x£(0,+8)ឤᡂ$ᓽ.(পᵫÖᦪᓻ)=¥g(x)=elnx,1)×ØF(x)=j(x)—g(x)=yx^—elnx,,eZ2-e(%—ve)(x+\/e)ᑣU)=x--=—^ߟ=------x---Ùx£(°$+8),cOVxVpgF1(x)<0,.P(x)ᙠ(0,Ú)\xPᦪÛcZ>ÚgF'(x)>0,(Z)ᙠ(#,+8)\xRᦪÛ×ØᦪF(x)Ḅᓫ⌴Px(0,Í)ᓫ⌴Rx(p+8).ফᵫপcV=pgF(x)u1ᨬ(/)=0,

162Ꮇ]r)®g(x)¡ᙠ“ᑖ±=”ᑣᐸÍν஺Ý5).ᦑ]ᐸ¶·@(y~^—k(x—\[e),ᓽy=fcr+3ßàᵫ./(x)Nkr+®3¨xGRឤᡂ$ᑣx2—2kx~e+2lc\[e^0¨AGRឤᡂ$,."=4Ý34(2äᎸ-e)=4&2—8A"\R+4e=4(Z(3pW0ᡂ$×Øk=#,“ᑖ±=”Ḅ¶·@(y=^v-1é☢Óºg(x)W&x—]¨xG(0,+8)ឤᡂ$]G(x)=elnLr\/^+f',ᑣG'(x)=(-ᘊ=⌨(K_.,.cOVxVÊgG'(x)>0,cx>ÚgG'(x)<0,c*=pgG(x)u1ᨬᜧ0,ᑣg(x)W&x—£¨xW(0,+8)ឤᡂ$ᦑᡠ“ᑖ±=”Ḅ¶·@(ᨬ3|.4.(2015ᓭó)ᦪßx)=Fஹ+lnx(aGR).(1)c஺=2gôõßö®1ḄᜧÛ9(2)c஺=2g᝞øᦪg(x)=/U)—%úᨵ3ûü½ᦪ%ḄuwÛ(3)Ó(¨Ö3ᑗÊ᦮ᦪ”þᨵln(஻+l)>9+9+:+…DJ//஻I1

1632(1)a=2ᵞ)=+111x,ᐸ(0,+8).ᑭᵨᦪẆ"#ᦪḄᓫ&ឋ᩽)*ᨬ)ᓽ-.(2)ᑭᵨᦪẆ"#ᦪ./)Ḅᓫ&ឋ᩽)*ᨬ)#ᦪg(x)=/(x)2%4ᨵ2678ᓄ#ᦪy=«r)*#ᦪy=kḄ=>ᨵ?4ᨵ26@ᓽ-.2x—1(3)CD2᪷FপḄHIJx>I,y(x)>l.ᓽx>lF7+lnx>l,ᓽQI1QI1L4-1R+11ST=UᑣᨵWU>ᓅ7Yᑭᵨ“[\]^”`aᦪḄbcឋdᓽ-ef.KKZ,K~T~1CDgᑭᵨᦪhijDklᓽ-.2m(1)஻=2QT)=o+'.ᐸ(0,+8)..-21x2+1■:/U)=(x+1)2+X=XA-+1)2>0,ᙠ(0,+8)vwx#ᦪᦑA>1ᐔ஺>|1)=1}X=1~ᨴ=/(1)=1}OVxVl.)1)=1.99(2)஺=5x)=JH}+lnx,ᐸ(0,+8),uZ,\XI1)JW2(x+l)-X2x(x+l)-'

164S(x)=0eX|=g,ᜐ=2,0<%ᡈx>2f(A)>0;;+8y(x)f+8.#ᦪg(x)=")—k4ᨵ267/.#ᦪy="x)Ḅ=>*¡y=ᦇ4ᨵ26@.ஹ3:k>3—ln2ᡈ¤<]+In2.ᦑAḄ¦)¨(28,1+ln2ju(3-ln2,+°°).(3)klCD2᪷F(1)ḄHIJx>lᐔc)>l.2cT2]ᓽᡀ>1®+lnx>l,ᓽ12¯,Z+1ᦇ+11¶x=pᑣᨵ±U>²\213141n+\1´µeIn¶>·ln2>y,In---->~~~234111---72+1〃3-5-7-123

165ᓽlnf-X-X-X----F-■—1lnUA23nº3ᓝ5ᓝ7ᓝᓝ2஻+.»஻+1)¼+%.+ਭCDgᵨᦟhijDklজ஻=1À|¤Á=ln2,ÂÁ=/Ã31n2=ln8>l,ᡠÅ32>},ᓽ஻=1À|ᡂÇ}ঝᎷÊ஻=k(Z£N")À|ᡂÇᓽln/+l)>}+9+:+…+D7ÐÑ”=4+1',k+2]k+2<1,1,1.,1ஹln(஻+l)=ln(%+2)=lnÒ+1)=E(A+1)+In>(^+5+^+…+k+2lrrk+\,2GX-Iᵫ(1)ḄHIJx>l1g+/+Ji,ᓽmFTk+2•k+2o]=2k+3,m+1ᓽln(k+2)>]+§+Û+…+2a+]+2.+i)+iᓽn=k+\À|±ᡂÇ.

166ÜᔠজঝJa·2ᑗß᦮ᦪ஻áᨵln(஻+l)W+g+3d------ᓃ].JJ/unI1ÍÎu⚪f⚗F(m)᪆9:(h)1.(206ᐲäåæ)çJèᙊ+ᓩ=—)Ḅë᳛ᙶîèᙊÂᯖ?ð᳛1Ḅ¡*ᙊ(x—2)2+°-2º=£ñᑗ.(1)]èᙊḄCò}(2)ÊîèᙊÂᯖº?*xóᚖḄ¡/*èᙊ@·A,B,*)ó@·C,?AB*FCḄõᔠ]ö408(஺ᙶ᪗ø)Ḅ☢ú.22(1)ᵫû=ü-e஻=&c,-eèᙊḄCòᑶ+%=1.îèᙊÂᯖ?ð᳛1Ḅ¡Còy=x—c,ᵫ·ÿᙊ(x—2)2+()2=ᑗᙶ,c,ᓽᙊḄ.(2)/Ḅ=1),C(0,=k),FCḄM(xo,ᑘ)%-2)-ᙊὶ#ᓄ(2%1),4〈'+2)2=0,A(x”y)B(x,")ᵫᙶ᪗,-2᪷/ᦪḄᐵ/■:4=ᑭᵨ|AB|=(1+᮱)[(ᱏ+%)2—©IF].0ᑮ/Ḅ<=d=

167(D,•=@·r஺=.஺/•••/=/஺2=஺2,22.•.ᙊḄᓄᐜ+£=1.FᙊGᯖIJ᳛1Ḅy=x-c,:Pᙊ(X-2+0-2)2ᑗ.12—2~c|y[2_••~V——2W°12.•.ᙊḄ+)2=1.(2)/Ḅy=k(x~\),C(0,~k),FCḄM(xo,%),MQ$-2)-y=/c(x-l),ᵫᓄ(2%+1*—4ab+2c2=0,x2+2y2=2,AQi,yi),B(M,g)..442%2nA']XI+X=2$ij=2᮱+k22A+1.X!+x221c1,1-2=2)+1=5kr=]./.X\+X2=1,X\X2="9.

168ᑣqr=s1+Ḅt(ᓽ+ᜐ)2-4b◍w=y(1+ᓶ7x(ᙥzI42__V30ᑮ/Ḅ<=d=^=p={,SAAOB=mAB|d=gx|X^=}.2.(2015•~)᝞ᙊC'5+i=l(a>b>0)Ḅ=᳛ᙊCḄ⚔TᙊᙊT+(x+2)2+y2=/(r>0),ᙊTᙊCMN.(1)ᙊCḄ(2)PᙊCM,NḄIMP,NPᑖxR,S,஺ᙶ᪗|OR|+|OS|Ḅᨬ.(1)ᵫ⚪஺=2,ᵨ=᳛,-a,b,cḄᐵ/·rb,¡ᑮᙊ.(2)Mg,M),N(X,y>2),P(xo,%),MP,NPḄ¢)=0,R,2

169SḄ£ᙶ᪗¤ᔠM,P¦§ᙊR,SḄ£ᙶ᪗¨©ªᵫ«¬®-ᓽᑮᨬ.পq⚪஺=2,e=ᙶ2:.c==,b=-\la2—c2=\;ᦑᙊCḄ^'+3=1.2MNᐵx²³Mg,´µN3,ᑓµxo,yo8,ᑣMPḄµ%=·¸2x-xo,Xo~X\¹_»¼ᵨµ'0-¾µµ'1g·À'o+xo'l¢y—0,¹XR----------,Áᳮ----T-----/.yo-y\yo+yi22i2,vjyr,-AovTᦑXRXS-2_2,**yyÃMPᙠᙊᦑÅ=41µÆ*=41µÇµÈᐭÊ**µ-41-'Ë—41-஺µµᵨ4GMߟ{µXRXS=ÍÎ=ᓝᵬ=4ᡠ|04IOSI=|ÒÓÔ=ᕡÖ=4,|OR|+1OS|22y]\OR\-\OS\=4,×IØ×|OR|=|OS|=2,Ù®Ú.ᑣ|OR|+|OS|Ḅᨬ4.3.2015ÛÜݵᙊC᜛+5=la>Z»OḄ=᳛e=ᙶßà2ᖾ.

170(1)ᙊCḄ᪗â(2)᝞ᙊ⚔A,F஺Ḅ(ᙶ᪗ãᔠ)ᙊCP,஺åQAᑖyM,Nºx.æçèḄᙊᔲêFë(PQḄJ᳛ìᐵ)íîïðñḄ¤ò.(1)ᑭᵨßàó=᳛ᓽᙊCḄ᪗â.(2)(xo,yo),ᑣ஺(ôᑘ)ᵫ(1)ஹQAḄö¡èḄᙊᓄ÷)¢y=0,ᑣ*=/ᓽ¤ò.(1)ᵫßà2/rb=»,cyla2-b2y/2ᵫ^=~=a=),¼½ci2=4,h2=2.22ᙊCḄ᪗âw+5=1-(2)¤òMNèḄᙊFë(ᙢ0).22ïð᝞ú(xo,yo),ᑣQ(%),I+*=1,ᓽ/+2₠=4,VA(-2,0),.•.ýy=T;(x+2),ᓝ

1710,QAy=-^x+2,.,.A0,ញjbMN^Ḅᙊx°X0+'-£^%'-*5=0ᓽx+y*4—+஺Vxo—4=-2yo,.*.x2+y2+^y—2=0,/y=0,ᑣf—2=0,234=±6\8.••:MNḄᙊ=>?F±Al஺224.2015•ABCDEFG10,1,G20,-1ᑖIJᙊCiM+5=136ᔊ60ḄPஹRᯖ?TᱥC2Ḅ⚔?ᙠᙶ᪗Z?ᯖ?Q,?M[Ci\C2ᙠ]^_▲Ḅa?b|MQ|_5=3"1fTᱥC2gJᙊGḄi2\ᙊ/+஺+12=1kᑗḄ/y=©x+f,HW0aJᙊGpA,8r?sJᙊGPtᙠ?PvwA+OB=AOP,fzᦪ7Ḅ}~.?1TᱥḄf=2py,f3p=2,3TᱥiᵫTᱥḄ>3MḄᙶ᪗ᵫJᙊḄ>3஻=2,ᵫa,b,cḄᐵ¿·rb,3ᑮJᙊ;

172(2)ᵫᙊkᑗḄᩩd=r,:gJᙊὶy,ᵨ>ᳮᓄ᦮ᳮᵫ^¡ᦪḄ~¢ᓽ3ᑮ.2(1)ᵫpTᱥCzḄ⚔?ᙠᙶ᪗Z?ᯖ?¤(0,1),TᱥC2Ḅf=2py,ᓽ3=1,ᓽᨵp=2,ᑣTᱥf=4)iᵫ⚪§3a2—h2=i,59©ᵫTᱥ>F|MF?|=)%+1=3»3yM=yᡠ:¥|),°|MF||=1(4?+±+1)=,,ᵫJᙊ>F2a=|MQ|+|MG2G4,3஺=2,ᦑ³=/-1=3,2-2V+°JᙊḄ´+y=1.(2)A(xi,M),5a2,y),P(M,No),2ᑣᵫ5(+µ=ᐭF22X+X=AX,·+ு2=ᙳ0,bº+¥=1জ120©/:y=A(x+/),஽W0\ᙊf+G+i)2=1kᑗᑣᨵ\¾ᔁ=],2tᵫᦇW0,3W0),ঝ

173GÃ+f&,©ὶ4x2+3y2=U,y3%4+3³/+6³x+3³2—12=0,b/=36஻Ä4%4+3᮱&%3᮱P-12&>0ឤᡂbX|+x2=ÈÉ5,^x=',42tIOKIJKᡠ:M+>2=©Ê+x2&+2"=^p^p,“pJ—6³8ktஹᡠ:Ë4tÌ?WxiE12Í2τ16Î,ÏÐজÑÒ%4+3Ó2Ô+R4+3᮱G$ᡠ:*=ÕÖ©×ঝÑÏᐭ3/=,/W0,᪵±1,w3ᡠ:4Ḅ}~ᵨ2Va<2,b2W0,bÍÎu⚪f⚗Fopq᪆9:ojq

1741.(2015ᓭÚCD)EFTᱥCx2=2p.y(p>0)Ḅᯖ?Ê=ÜḄ/aTᱥCp?A,B,Ý/ḄÞßà[45஺áA8Ḅâᚖayäp?Q(0,5).(1)faḄ~i(2):ABḄᙊaxäp?M,N,åæçèḄéê5,Ý/ëGìíá,qfîḄᨬᜧ~.?পf/Ḅy=x+g,4ᓽy)B(M,»),ὶ\Tᱥ,ᑭᵨ>ᳮfABâ?ᙶ᪗ôâᚖõᔠA8Ḅâᚖayäp?Q(0,5).fPᓽ.(2)/Ḅy=fcc+l,Ïᐭf=4y,fA8Ḅùú:gABâ?£)(2û2Ü+1),s.¶ZMDN=2a,fSḄ⊤Ñôᐵÿ77ᐗ=%ᑭᵨ஺ᑮxḄ|DE|=2p+1,rL|஺02+1S.,.cosa=^---஺=23+2,ᯠ$%&Ḅ'ᜧ).%+(1).ᱥ0C:32=20஺>0)Ḅᯖ67/■((),:,

175;/Ḅ<=>745஺AB/ḄCD7y=x+g,GA5,I)B8(x2,)'2),1+2BMx2_2px_p2=o,ᵫ'.2=2py,Xi+x2=2p,yi+QB2=xi+x2+/B=3p,MA8R67஺Q>,3A3Rᚖ07y—]p=—x—p,Ux=0VᐭMy=%=5.p=2.ফG/ḄCD7y=fcc+l,Vᐭf=4yMf—4Ax—4=0,\8|=QB|+*+2=%^_+32Q+4=42+4,ABR67஺^2`2+1Q,¶NMDN=2a,S=2a-^\AB\=a-\AB\,•b=''\AB\~a,DᑮxḄ|஺£1=2d+1,IDE]22+1=2g+2'

176;᝕2=0Acosa'ᨬj)a'Mᨬᜧ)7ᐰq7TᦑnḄᨬᜧ)7o|/1£Q|J22.^2015p□rsQ᝞uBvwxᙊC+z+Q2=1BAஹ8|}ᩩ0x=±2,y=±lᡠᡂḄḄ_⚔6.পG|xᙊc6B0ᡝ=஻70+஻0+62^B”QᙠᙊBᙊḄCD^2QMஹN|xᙊC_6B0OMஹONḄ=᳛¡¢£¤00Aஹ஺2Ḅ=᳛¡¢B¥¦§0MNḄ☢¢|ᔲ7)Bª«ᳮᵫ.®6¯+পGpḄᙶ᪗B²³oᡝ=஻?QA+஻OB,´,஻¶PḄᙶ᪗Ḅᐵ¹Bm´ᙊḄCD.^2QGMg,ºQBN^X2,»QBᑭᵨ0OMஹONḄ=᳛¡¢£¤0஺4ஹ08Ḅ=᳛¡¢BMᑮᑴBᜐḄᐵ¹.Ḅ¾¿஺ᑮ0ḄBᯠ$«§0MNḄ☢¢|ᔲ7).%+প᧕A(2,l),B(-2,l).

177Û=2^"?B?Q,GP®),%),ᑣ¤+)9=1.ᵫ஺ᡝ=஻B஺ᓝ஻஺ÆMyo=m+n,ᡠ¾ÇÈ+ভᦑ6Q(஻?B஻)ᙠᙊf+)?=.(2)GM(X|,M),N(32,y2),ᑣË=ÌCMxÍ=16y1)5=(4—X1)(4—X2),ᓽx++x=4.Ð70MNḄCD7(ÑxDy(ÒºÓ+ᑁ"32¾=0,ᡠ¾஺ᑮ0MNḄ7M"Ö2"1'B(ᵯߟX1)2+஺2—)'|)2'ᡠ¾§OMNḄ☢¢S=1|A//V|-d=^x\y2—JC^IIix2yly2ᦑ§OMNḄ☢¢7)1.3.(2015ÜÝrs)vwxᙊCḄRÆᙠÞ6O,ᯖ6ᙠxBÆ᳛7ßBxᙊCḄ6ᑮ_ᯖ6Ḅ¡à74.

178(1)xᙊCḄCD(2)GA7xᙊCḄ`⚔6B³6AḄ0/¶xᙊá¤6M,¶)Bá¤6N,³Þ6¶/ÌâḄ0¶xᙊá¤6P.«+|AMHAN=2|0P/./v2®6¯+(1)GxᙊCḄ᪗åCD7”+C=13>6>0)BᵫÆ᳛æàa,b,cḄᐵ¹àxᙊḄçBMᑮCDèB%M“Bb,ᓽêMᑮxᙊCDফG0AMḄCD7+)B=Z(x+2),ὶíxᙊCDBᵨîïᳮBG4-2,0),M(M,º)BêMMḄᙶ᪗Bᵨ_6ḄæBðñ|AM,|AN|,òᵫ0y=fcrVᐭxᙊCD,MPḄᙶ᪗BMᑮ|஺᜜BðñᓽêMôõ.22%+পGxᙊ஺Ḅ᪗åCD75+*=1(4>/?>0),^2=/724-

1792-8$ᡠ¾ᓽ=1+43“2—8ÿ+2+8j4]HM=31+4ᔣJ+ER“6+16/1+J=ஹ/j1+4ÀÁ1+4•\AN\=4+4=2-\jl+k2.4N1+/.2N1+81+ᑣ|4W|-|AN|=1+4&2=1+4?,$%&0PḄ*+,-y=kx..+4/2=401+4*-4=0.449$Pxo,yo,ᑣḄ=]+4,6=]+47,,4+48,8+89ᡠ;|0<==>32஺@=>ᡠ;|AMBAN|=2|0P/.4.2015•ᐲEFGHI>ᙠKLᯖLᙠxNOḄPᙊCḄS᳛,Uᐸ>WX⚔LZ[ᱥ&f=-4^ḄᯖL.

180(1)_PᙊCḄ᪗a*+/(2)ZᔲcᙠdLP(2,l)Ḅ%&/ePᙊCfghiḄjLA,B,klP*Pm=/ncᙠ_o%&/Ḅ*+/nhcᙠpqrsᵫ.uvLw-(1)$oPᙊ*+ᑭᵨPᙊCḄS᳛,3ᐸ>WX⚔LZ[ᱥ&7=W4^)ḄᯖL_o{|}ᓽ0oPᙊḄ᪗a*+/(2)$o%&*+ᐭPᙊ*+ᑭᵨᳮᔠᔣ}Iᓽ_0.fv2-(1)$PᙊḄ᪗a*+,7+/=l(4>b>0),•.•PᙊCḄS᳛,3ᐸ>WX⚔LZ[ᱥ&f=W4^)ḄᯖL.♦.%=^,Vc2=tz2ߟ/?2,***6Z=2,c—1,22•PᙊḄ᪗a*+,1+^=1.(2)ncᙠdLP(2,l)Ḅ%&/klᩩᑣ/Ḅ᳛cᙠ.$/Ḅ*+,)=-2)+1,ᐭPᙊ*+0(3+4Ḅ/W2—1)+16ᡝW16ᦇ-8=0.$A஺௃yi),B(X,")ᑣᵫ=32(6k+3)>0,0Q—ai+x2=»2

18116K—16%—8=-3+4᪗--PA•778=5•4'•,•X!—2X—2+yj—ly-1=4»22.\¥1¦W2§1++4¨1+᮱=ஹ-16W16k—88k2k-l,1,5--2X^+4+"h.4%45•,-3+4p=4'一PB5cᙠdLP(2,l)Ḅ%&/ePᙊCfghiḄjLA,B,klPh=一4ᐸ*+,>=³

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭