高考数学复习讲练测

高考数学复习讲练测

ID:83409165

大小:9.44 MB

页数:66页

时间:2023-07-14

上传者:灯火阑珊2019
高考数学复习讲练测_第1页
高考数学复习讲练测_第2页
高考数学复习讲练测_第3页
高考数学复习讲练测_第4页
高考数学复习讲练测_第5页
高考数学复习讲练测_第6页
高考数学复习讲练测_第7页
高考数学复习讲练测_第8页
高考数学复习讲练测_第9页
高考数学复习讲练测_第10页
资源描述:

《高考数学复习讲练测》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

§3ᦪஹ⌕.ᦪḄ᪵ឋᦪ!"ᦪḄ#⌕⌶%.&'Ḅᦪ(⌕ᨵᣚᐗஹ,ஹ-./ᦪ0123.1.ᣚᐗᣚᐗ!"345ᓄḄ#⌕78.ᣚᐗḄ'9᧜;5<=Ḅᳮ?᪷A3BCᣚ.ᣚᐗḄDEFGHIBᡈKBLᣚᐸᐵOP.LᣚQ.ᣚᐗRSTUᐗV.WXYZTUᐗV[\]ᑖᦣḄᩩabcdᩭᡈὅ]◚hḄᩩai"jᩭᡈὅ]ᩩakl?ὶ/dᩭᡈὅKᣚno៉ḄqQrstᑮᓄvn᧕ஹᓄxnyஹᓄznoḄ{Ḅ.ᵨḄᣚᐗ(⌕ᨵ}~Cᣚஹ᦮CᣚஹᐗSCᣚஹCᣚஹᦪCᣚ3.ᵨᣚᐗ⚪.⌕KBḄ.2.,ᵨ,Kqᩭᦪ⚪ḄSn,.,Ḅ!9bcKBᐸᳮ?ACᦪQḄឤ3Kq.,Ḅ{᪗ᦪ⊤tQcj"ᐰQ,&'sRᓝᑖᐹḄᦪᢈ.=〉ᵨḄ(⌕(1)ᐗ¡¢(ᒹ¥¡¦¡¢)0ᐗ¡3QḄk¨?©(2)¡ªᦪᡈ[ᓄn¡ªᦪḄᔠªᦪḄᓫឋஹSឋ0ᨬḄ¨?k¯©(3)2k¡°ᨵᐵḄ3Q03Q©(4)±²³⚗xyḄ¡µ¶f(X,y)=0Ḅᓄyk

14.1212•ñòḄ2⚪.ᡠó12✌ᐜᎷ.ᡠ⌕2Ḅl?ᡂ÷ᯠùúXûPüᳮ×jýþḄl?ᩭ.AüÿḄᎷ⚪ᡂ.Ḅ᪶!".#ᡠ┐&Ḅ'⚪(()☢+᧕ᐭ.ᡈ)☢ᐭ.012345⚟7ᦋ9:;☢ᐭ..ᐸ23=>?⌕((ABC᜻ᑴFḄᦔH.“)Jᑣ”ḄMNOPᦪR'⚪ḄS⌕Tᶍ.1ᳮW(XḄYZᨵ\]1^_`aᳮb]2^_`ᳮb]3^c`db]4^_`ᩩf]ᡈgᑖᩩfib]5^ᵫ_`ᩩf1CḄk)lmb]6^nob]7ᵫCpqḄlHr.Ḅ〉ᵨv\]1_`ᩩfwxḄ⚪b]2lmḄ☢ylmzᐹ|ஹz=ᓫḄ⚪ᱯlmᔲYZḄ⚪b]3ᔜ▲lmḄ⚪b]4ᙠឋ⚪b]5cឋ⚪\6x]7i⚪r.ஹ⚪O1_`x21,y2LIog2ax+log2ay=௃ogaax2+log“]ay2,ᐸWa>1.1ogaxyḄᨬᜧᨬ.O\_`rZᓄ1og2x+1og2y—21ogx—21ogy—2=0,a0aaᓽ1ogx—124-1og«y—12=4.aX=logaX,Y=1ogy,ᑣaX-l2+Y-l2=4.জ••x2Ly2La>1,X20,Y20.3জ⊤¡¢]1,1iᙊ2¤¥Ḅᙊ¦AB]᝞¨1-2,'⚪©ᓄᙠª«ᩩfজ¬X+YḄᨬᜧᨬ.¨1-2MN1.X+Y=t,ᑣ®¯°±²³=c*+t^ᙊ¦জ·ᑗ1-*=2+2ஹᔊb°±²2¦Ḅpqº»AஹBt““=\l+ஹ¼.MN2.X=l+2cos6,Y=l+2sin0,ᵫX30,Y20,½cO/6)W஺W(2k/3).¿ᨵ1og»(xy)=1og,x+1og«y=X+Y=2+2ஹÀsin[9+(n/4)].(4/12)W©+(n/4)W(11n/12,0=(n/4)1oga(xy)ᨵᨬᜧ2+2

20=c(JT/6)ᡈ(2ᐗ/3)1oga(Xy)ᨵᨬ1+Ã.Ä>\Å⚪Æ27Çᣚᐗ+ÉḄ:;Ê¡Ë'⚪ḄÌÍÎOz=ᣩ.2Ð`a£(—8,—2],ÑÒᦪf(x)=2asinx—2cos2x4-(a2/2)—4a+3Ḅᨬ19,Òᦪf(x)Ḅᨬᜧ¢Ó½ᨬᜧḄxḄ.O\q⌮ᔣᨬḄ'⚪⌕f(x)Ḅᨬᜧ✌ᐜØCÙᦪaḄ.ᐜ᪷Ûf(x)Ḅᨬ19Üᐵ¿aḄ3.Þßᑮf(x)ᓄᐵ¿sinxḄÇÒᦪᡠ¢áᐭ.f(x)Ḅᨬ.f(x)=2asinx—2(1—sin2x)4-(a2/2)—4a+3=2[sinx+(a/2)2]—4a+1.âaG(-8,-2],/.(a/2)£(-8,-1].sinx=1,ᓽx=2kB+(II/2)(keZ)f(x)„=2(1+(a/2)2-4mla+1=(a2/2)—2a+3.ᵫ⚪½(a2/2)-2a+3=19.O½a=8(ãä)ᡈa=-4.a=-4f(x)=2(sinx-2)2+17.sinx=-1,ᓽx=2kn—(n/2)(keZ)f(x).*=35.mÄ>\Å⚪WÑäᣵᩩfaG(—8,-2]Ḅ▲ᑴᦋaeR,ç᝞èOP?Üêëὅ+íîcî.3_`ᦪᑡa஺)ḄÆ⚗a.=n(n+1)'(neN).'ᔲᙠrñᦪᑡb.,νrZa.=l-b,+2-b+3•b+-+n•b஺&cᑗnᯠᦪnóᡂ.᝞HᙠCrñᦪᑡôb23„)ḄÆ⚗aZb᝞H+ᙠöÄ>ᳮᵫ.O\ᵫ¿ôbjᐹᨵrñᦪᑡcḄYZÅ⚪〉÷¿ᵨø²ᦪ.ᨵ¢ù.púÅḄO⚪MN.MN1.Ꮇᙠrñᦪᑡôb.,νa„=1•b,+2•b+3•b-----Fn•b஺&cᑗnᯠᦪnóᡂ.2+íb0=bi+(n-1)d,ᑣn(n+1)2=1•b,4-2(b,+d)+3(b,+2d)+…+n[b,+(n-1)d].ᑮpqø²ᦪb,ஹd,ᡠ¢ü◤Ón=l,2ᓽ.n=1,½bτ=4bn=2,½3bi+2d=18.ὶO½b,=4,d=3.b=4+(n—1),3=3n+1.nrZn(n+1)2=1-4+2•7+3•10+-+n(3n+l)ÿn=l,2ᡂᔲᑗᯠᦪnᡂ◤⌕ᵨᦪ.☢Ḅὅ⊡.!2."bn=bi+(n—1)d,ᑣn(n+1)2=1•b,+2(b,+d)+3(b,+2d)+•••+n[b,+(n-1)d].$%&'()*n(n+1)z=(1+2+3+-+n)b,+[1•2+2•3+-+(n-1)n]d.1+2+3+…+n=n(n+1)/2,1•2+2•3+-+(n-1)n=P\+P2+-+P23n=2(C%+C'+…+C>)=2C\+i=[(n+1)n(n—1)]/3,/.n(n+1)2=[n(n+l)]/2bi+[(n+1)n(n—1)/3]d,

3ᓽn+l=(bi/2)+(n-1/3)d=(d/3)n+(b1/2)(d/3).(d/3)=1,(b)=4,-*.d=3.(b,/2)-(d/3)=1./ᙠ12ᦪᑡbn,41%ᑗᯠᦪnᡂ.56bn=3n+L78!ᐹᨵ;ឋ=ᨵ>⌕?ᵨᦪ.@4"aஹbஹcஹdᙳCDᦪE8ᑡFGH1%a+bVc+d,জ(a+b)(c+d)Vab+cd,ঝ(a+b)cdVab(c+d)ঞLMNᨵ•GHDP.Q-85GMNRS⚪UᯠVWᵨX.Ꮇ"H1%জஹঝஹঞᡂZCaஹbஹcஹdDᦪᡠ\জ]ঝ^_*(a+b)20,•4cd<(a-Fb)(c+d).bᔠঝ%*4cdVab+cd,ᓽcdV(l/3)ab.ᵫট%*(a+b)2V(4/3)ab,ᓽa?+b2ீ(2/3)ab,ef.ᦑH1%জஹঝஹঞLMNᨵ•GHDP.78$hḄij!klH1mnoNmpḄGᦪᨬrsef.Fஹt⚪uv1.wxx,y£R,yx?+y2=4,ᑣx?+6y+2Ḅᨬᜧ{().A.15B.14C.11D.102.}~ᱥ4y=x?—8x+cḄᯖᙠx$ᑣᦪcḄ{().A.16B.14C.12D.103.}aஹBx2—2ax+a+6=0ḄG᪷ᑣ(a—1)?+(B—1),Ḅᨬ{().A.8B.18C.-12(1/4)D.H/ᙠ4.ᨵ✌⚗Ca.=1Ḅ12ᦪᑡa1ᦪᑡbJ,5GᦪᑡV⚗^*Ḅᦪᑡan+bn)ḄF⚗ᑖC3,12,23,ᑣanḄ2d]bnḄqC().A.14B.-5C.7

4D.95.ᦪy=sinxcosx+sinx+cosxḄᨬᜧ{.6.l¦§2x'-yz—8x+6=0Ḅ&ᯖ¯°±¦§²AஹB}IAB1=4,ᑣ5᪵Ḅ°/ᙠᩩ.7.ᙠ¼p½ᱥᳮpḄlLZ¿ᘤÁÂḄÃ24*nļpᑖ*ᑮa-a2,…aGᦪÈ.ᡃÊËÌᡠ¼pᱥᳮpḄ“ᨬÎÏÐ{”a5᪵Gp8]ᐸÓÏÐ{Ôa]ᔜᦪÈḄ2ḄÖᨬ.×ØËÌÙa1a,…ansa=.28."a>0,Eᦪf(x)=2a(sinx+cosx)—sinxcosx—2a?Ḅᨬᜧ{.9."¦§ḄLÝᙶ᪗àáÖâ²xãÝ᳛e=ஹ5/2.wxP(0,5)ᑮW¦§$ḄḄᨬÏèã2,E¦§Ḅ.10."aஹbᙳCᦪêFGë8A={(x,y)Ix=n,y=na+b,nGZ}ðB={(x,y)|x=m,y=3m2+15,meZ)ðC={(x,y)Ix2+yY144}.E8H/ᙠᦪaஹb,4*ACBKLy(a,b)eC÷6ᡂ.§1t⚪ùúᢣᓭᦪýὃùúGùᩖḄ◤⌕ᙢஹẆᗐ.ᙠᡃᦟᩞḄ"ᯠ$%&ᙢ'(ᦪ*Ḅ+Ạ-.ஹ+/ᢈ1+/23ᗐ'-.4᪀678ᡂ'-.:;.<ὃ4>ᦪ*?@▤BḄCᐭE▤BḄF⚪HIJ.K▤BL᣸ḄN*Oᔲ?Q*RSTUVḄW(Xᑖ᪆[⚪O\][⚪1^Ḅᓣ`aRbcdeḄfg.hijk᪷mnḄoὃpqrs*RḄt▭vwᔠᳮḄL᣸.-ஹF⚪Ḅ⌱|/⌕}wᦟᩞḄe~ᣓW(ὃḄ~eᦪ*Sᦪ*23W(ᦪ*1^.ᐸᱯ~ᔣ%ᑁḄᔠឋI%23ḄឋJp%pḄ〉ឋ.F⚪Ḅ⌱|᪷m᝞ᑣ1.✌Ḅ¢~ᙠ▤B£¤*R¥¦Ḅ§ᓫᐗJª<«*R¬ᨵ®¯ឋḄↈ¢±⁚K⌱%F⚪.2.ᦟᩞḄe~@ᜧḄ2☢H(ᦪ*Ḅe⌕ᑁᨵ¶ᦪO2ஹ·¸Oᦪஹ¹ºஹᦪᑡᦪ*¼½3ஹ¾¿Ḅ&☢ᐵஹÁ&OÂÃ&¹KÄÅᔠឋḄF⚪Hᣴ.ᐹᑮÉ2☢ÊËÌᑜᑖ%ÎÏÐF⚪.Ñ᝞¶ᦪO2KF⚪Òᑜᑖ%ÓᔠOÓᔠSḄᵨஹ¶ᦪḄÕÖឋVஹ¶ᦪᵨឋ[⚪ஹ¶ᦪḄᔠ[⚪ஹ¶ᦪSஹ2×~¹ØÐF⚪.K᪵L᣸ÚᑮÛᔣÜᐭஹᔣὶḄÞḄ.3.+/ᦪ*S23Ḅàáᦪ*S23ᦪ*-.ᙠâ(ãÂäḄåÖᭆçÌⅾéᙠᦪ*-.«Rஹ«êᵨḄ¤

5.hiQᦪ*S23Ḅὃëjᯠ⌕Oᦪ*-.Ḅὃë4ᔠ£¤ᦪ*-.Ḅὃëì᧜*RQᦪ*S23ᳮ\OḄî.+ïK᪵Ḅð.ᙠ/ñòᡃËᦪ*S23Wóᑮ•F⚪ᩭHö%'÷Ì1øᙠù☢ḄúᑮûüḄeý£¤àáþÚᑮÜᓄ.4.⌕⚪ᐺ⚪Ḅ⌱⚪ஹ⚪ᙠὃᐹᨵḄᙢᐸ⚪Ḅᡂ"᳛$%&'()*Ḽὃ,ᑖ.ᑡ01⚪.᪷3456ὃ7⚪Ḅᱯ9:.;<“>᪵.ᵨឋ⚪>᪵BCឋ⚪>᪵DEឋ⚪>᪵FᔠHI⚪”Kᑡ01⚪.5.ὃ⚪ḄᢈMᦪOὃPQRᦪOSTஹᦪOUVஹᦪOWஹᦪOHIḄXYZ[KR\ᳮ^_ὃ7ᢈMḄXY.`bὃcdᐭfgḄὃhijkḄᦪOSTᦪOHIlmnᡂ•bpᦪqR᝞stᡠvwḄSTxᓄ0,ᑖ9z{|}⚪ḄᢈM~.<ὃ⚪ḄᢈM0b1⚪Rᨵ⌕Ḅ.ஹḄḄ~1⚪ḄWஹஹ.ᐳ~9b1⚪b1⚪ᑖ0⁚.ᐸ1⚪•Ḅ▭¢RḄ£¤¥1⚪¦1⚪§Rᢥ᯿STªᑡt᦮bᦪOᦟOᑁ®Ḅ13¯°±ᔠᨵ9ᙢᑡ²~7b1⚪³´µᔣ·ᐭஹ¸ᔣὶº»ᦪOd¼9ஹFᔠ½.¾b1⚪Ḅ¿⁚ᙳᵫ“⌕9”ஹ“Â⚪”ஹ“1⚪ÔÄÅᑖ±ᡂ.ᐸ⌕9ÆÇ⌕ᢣ~;¿⁚Ḅ9ஹÉ9ஹ⚣ὃ9mËÌ⌕Íᶍ¥Â⚪Æ¿⚪⌱Ï~3⍝ÑÒḄÂ⚪ᡠÏÓÂᐹᨵÔOឋஹ°⚨ឋஹᐺឋÓឋ¥1⚪ÃÆ¿⁚Ïᨵ10⍝Ã⚪ᐸ⌱ஹஹ⚪Ä⚪Ḅ×Â04Æ3Æ3,É%m¢0Ì:ᑁ®°⚨.b1⚪ᣴÚjÛÏᜓ~ᝅ7⚪ᵨmÞὃcḄFᔠ⚪HI.1⚪ßḄ.ὃᢣᓭᐸá᣸ãÂä£☢ᨵᡠPæ¿⁚çᵫ“ᑁ®ᭆ⌕”ஹ“éW”ஹ“1⚪ÔÄÅᑖ±ᡂ.ᵫ}b1⚪ÚjᦪOὃz⌕xᐭêÄ▤ìᡠmíᨵîï᣸7⚪.1..ᙠðᦟñḄᣴòóôᯠö~qRᣴḄ_Yᓾ½~.Â᝞»}¿⁚“⌕9”⌕øÇù⌕ᙢᢣ²;¿⁚Ḅ9m˻ͥ“Â⚪”⌕øú²⚪ḄWᔣஹ⚪WḄ⌱Uû´üḄýÓZPþø⚪´üḄÚ᦮Æ“1⚪ÔKP⌕ø⚪ÿ◤ᑮ.2..ᦟḄᐰ.⚪ᦟᢵᵨ⌕ᦟ!"#$%&ᡂ.($⍗ᑮ*+,〉,./012"3456ᑮᵨ.7⚪8ᐰ9:;$.ᙠ=ᐵ?⌕@ᦔB.᝞B$D1E⁚GHIJKL7⚪M1N⌕OᐰPQR($D1E⁚Sᑮᨵ*+,UV⊡ᐙ〉(ḄYᑮZ[\]^Ḅ.3._.`ᜓὃcd_efP1ᝅL⚪hi1jklm5nḄo▅ᦪrstuḄ1j7.vwx⚪y0x⚪z{☢hᔜᨵ1ᝅ100ᑖḄ“x⚪5n_”ᔁὃ$_ᵨ.fᝅ⚪hᨵḄ_^ḄᨵḄiL⚪ᨵḄiv⚪ḄᨵḄiὅᔜὃᑴḄ⚪.⚪ᨵklḄrstuḄr5nஹ5nஹᵨ5nḄὃ᩵.7{5¡ὃ$¢£¤Ạkl¦§=¨5nᯠᓣ«Yᑮ1¨Ḅ᛻.®ஹ¯ᔁḄ°ᶍvwḄᨬ{12x⚪i“ὃᢣᓭ”§ὃᦪ¯ᔁḄ°ᶍ,ᡃ·¦¸12“®¹t┐”——¼ஹ½ஹ¾.⌱À⚪——¼⌱À⚪◀Âᦪ⚪^᜜ᜧ=ÅÆÇ᫏⚪^.6ÆஹᚁÊËÌᨵÍ2⌱⚗Ïὃὃ$ÐᵨÑÒÓஹᦪÔÕᔠஹ×ØÙÚஹeÛÜ⌱ஹᱯÞßஹ⌮áeÛஹâãäᣚæçsâ=¨tuOè.᪷ê⌱À⚪ḄᱯmèuḄ=᪵ឋᙠ“¼”¹íî,ïi&ᐰðIᑮḄ.ñò⚪1½ñò⚪ᜧ=ÅÓ⚪ᦪóÂô⌕Oᑏ¸è¯öö÷᧕ùὃ$ᡠûü.½ឋiñò⚪

6Ḅþ1⌕OÿᡈḄ⌕Ḅὃ⚪Ḅᢈᨬᜧ▲#ᙢ%&'()*ᫀḄឋ.⚪----/⚪Ḅᱯ1⌕23ᳮ567(.ὃ⌕ᢥ9⚪ᡠὃ;Ḅ<=1ᑖ?⚪Ḅ@ABCDEFḄ3ᳮ(ᡈHI)K⌕ᨵᳮᨵMNOP/.QḄ⚪R⌕S2TᑖUᑖᳮḄ⚪S2Vᑖ.ᱯW⌕XY“Q[\\[ᐰᐰ[^”`aὁᜧcd⚪.\P᦮ᔁ9⚪ᡃhḄi1jNOkஹm᫏c⚪op.qஹrsḄt⚗ᙠwxyḄz{mᡃh|}rs~ad⚪j1.ὃ9Ḅᢣᵨὃ9ᦟUὃ9m⚙ḄឋᦻὃḄឋஹᑁ\DUᑖᑁ⌕2Ḅ#~ὃ9ḄI9ᔁ᪀.z{ᐭwx▤B¢£Ḅὃ9¤Y¥¦.\ὃ9⌕§¨a©ªj«¬ὃ9Ḅ®¯ឋ°1±²©ª³¥HᓄḄᙢ`᪵¶?·ὃ9Ḅᑁ⌕2%&z{mḄ¸ᦔº»¼x½«¬¾Ḅὃ9⚪©ª±²¿¨ὅḄ©ªÁὃ9\ὃÂ⚪ḄᢣᵨÃ[ÄÅÂ⚪ḄÆÇ~Èz{Ḅ).2.ÉÊḄËẠᵨÍᵨÏ¿ὃ&ὃQГ⛳Ò”ᳮ\ÉÊÓᐶÕ.2001Ḅὃᦪ×9ᔁØᦪ)ḄËÊ⚪ÙPÉÊᓽÛÜᔠ⚪ÞËẠ<=ḄßᔠஹàáâãäÉÊḄËẠᵨ.ÉÊåḄæ⚪èKᐹᨵᐺëឋஹÍឋஹìíឋhᡈîïðñᦪ×ÆòᡈóÍðᦪ×ᡈÈôð⌕õ.ᐙᑖ÷=æ⚪ÊøᡠⅾúḄûü±²ýᔣ᢬᣾ஹᔣᵭᑮᓄ▎⚪ḄḄ.3.!"#$%&'Ḅ()2001*Ḅὃᦪ-.⚪/01234!"#$%&'Ḅὃ5678ᓄὃᦪ-9ᑁ;ᦋ☩Ḅ⌕?☢A7BCDEḄ⌕F.GHIJK⌕L()ὃMḄ!"#$%&'NOPQ᪗⌕SDὃMḄTU#$SV-MWMὃXTYZ⚪Ḅ[3\ᵨᦪ-Ḅ#$⌲1()-Mᵨ_ᨵḄᦪ-$%?abc"Ḅᦪ-Z⚪-Cd&▭Z⚪fgOᦪ-Z⚪h2Y.i⚪j.⌱l⚪1.ᵫnoOdḄpoᦪᑡa,,a,a*,…"sᡂḄᦪᑡa,+a,,a+a,a,+a஺…7225().A.noOdḄpoᦪᑡB.noO2dḄpoᦪᑡC.noO3dḄpoᦪᑡD.ypoᦪᑡ2.ᙠ{|ᙶ᪗~ᑁ(x,,y,),P(xz,y?)7G0g▲ᑁḄ.1,x,,Xz,2ᡂpoᦪ2ᑡ1,y“y%2ᡂpᦪᑡᑣP,ஹPzl:y=x(x30)Ḅᐵ~7().A.P,ஹP,ᙠ1Ḅ?

7B.ஹP2ᙠ1Ḅ?C.ᓃஹP2ᙠ1D.P1ᙠ1Ḅ?P2ᙠ1Ḅ?3{aJ7⌴[poᦪᑡ⚗Ḅ%O12,⚗ḄO48,ᑣḄ✌⚗7.A.1B.2C.4D.64.a,b,cᡂpᦪᑡᐸOVaVbVc,n7ᜧ1Ḅ᦮ᦪ¡Iogan,10gbn,1ognᡠsᡂḄᦪᑡ7.cA.poᦪᑡB.pᦪᑡC.GH⚗G⚗ᑖ¤7G0⚗GH⚗ḄnὑD.¦⚗Ḅ᎔ᦪᡂpoᦪᑡ5._poᦪᑡpJ¨©ai+a2+&3++ai°௃=0,ᑣᨵ.A.31+a101>0B.32+a100VOC.a3+H99^0D.a1=5156.ᦪᑡ{aJḄ8⚗Ḅ«ᔜ®an+8=a0,¯°#Ḅn£Nᡂ±ᑣ².ᑡᦪᑡ³´µ{a“}8⚗«ḄᦪᑡO.A.{a?k+1}B.{a3k+1}C.{a4k+1D.{a6k+1xxrlim--------7._rx="791+·”ᑣ¹ᦪfXḄ«º7.A.0B.{0,1}C.{0,1/2,1}D.{0,1/2,1,-1}8.»ᙢ½¾᛻ÀÁÂ⁐ÄÅ☢ᕈᓣÈÉ.ÊË5Ì1990*ᑮ1997*68*ͦ*ᓣ2%,®1996*%1997*ᐳÏÄÄÅ815ÐÑᙢÒÓYÔÕÖ×*ᑁØᢥ6ÚÛDEÜ¡Ì1998*ᑮ2001*ÏÄÂ⁐ÄÅ☢O×ÝÞᐭ.A.848Ð♦B.1679Ð/C.1173Ð/D.1730Ð/9.ᙠpoᦪᑡ{a.}a,<0,a,,>0,a,,>Ia|,S17Ḅn⚗%ᑣ.0A.SS,S3áâS,S”…ᜧâ2B.S,,Sz,…S1áâSm,S3,…ᜧâsC.S,,Sz,…S5áâS,S”…ᜧâ6D.S,,S?,…SmᜧâS",Szz,…áâ

810.aI,0,an,…7noäOâḄpoᦪᑡ,®an>0,ᑣᑡ×Úᦪᑡåজ1gaτ,1ga,•••,1ga…2ঝ2ai,2a2,…2a,n®a)a,a2a3…aa+i,…2nn@ai+a2,a2+a3,…aH-an+1»…nᐸ7pᦪᑡḄ7().A.জB.ঝC.ঞD.ট1Lpoᦪᑡa஺êa^-5,Ḅ11⚗Ḅëᙳ«75,ÌÜᣵ0⚗îḄ10⚗Ḅëᙳ«74,ᑣÜᣵḄ⚗7().A.asB.a9C.aioD.aτilim12.ᙠᦪᑡïaJa,=1,n⚗%Sn¨©an=(2S„2)/(2S-l)(n22),ᑣ38Tn=().A.-1B.0C.(1/2)D.1Hஹðñ⚪13.ᦪᑡ(aJ7✌⚗O1Ḅò⚗ᦪᑡ®(n+1)an2-na„2+ala=0(n=l,2,3,…),ᑣḄnn+1nó⚗nô7.14.ᵬஹö÷øù0ᜩᑖ¤ûü1Ðᐗᑮþÿᵬᑭ᳛2.88%,ᑭ᳛2.25%,ᙠᑮ.ᢥᡝᑭḄ20%!ᑭ".#$%&'()*+,-.ᑣᵬ0ᡠ234Ḅ5ᐗ.(Ꮇᑭ᳛ᑁ;ᢝ=>?@ABᑮ1ᑖ)15.EFa,b,a+bᡂH5ᦪᑡa,b,abᡂHKᦪᑡLOVlogmabVl,ᑣMᦪmḄ,NPQ.16.EFᦪᑡRaJḄSn⚗$Ua)-|-2a?4-3a3H-----1-na=2C3(n£N),ᑣᐸW⚗ann>2nXஹZ[⚪17.3]Mᦪ10a,+81a+207,a+2,26-2a〉_᣸ᑡᑖa,bᵨdᦪ%᪀ᡂf51ḄH5ᦪᑡghaḄN.18.iᑨklᔲ᪀⌼]MᦪHKᦪᑡaj,oᐸ$UX]ᩩqr(1)a.+a^lls(2)a3at(32/9)s(3)uvᨵ]xᯠᦪm,o(2/3)%,a/,a0“+(4/9)zᡂH5ᦪᑡ.#lᑏ-|]ᦪᑡḄW⚗f}s#=l~ᳮᵫ.19.EFᦪᑡan,an>0,ᐸSn⚗4S/(1)᝞@Ra6Q]✌⚗a,fKqḄHKᦪᑡᐸOVqWl,LGn=aJ+az2+…

9Irlim—«-»<©CT+aj,g5s(2)᝞@Ssj,SJ,…Q]✌⚗3,f51ḄH5ᦪᑡiKS.03na.(neN)ḄᜧḄ?.20.]ᨵ140Ḅᔠ¢£¤ᢗ¢¦tᵬஹ&§=(t¨2000©£¤¦tḄᵬt¨ª᜜¬32ᐗt¨ª᜜¬216ᐗ©£¤¯%ᡠª᜜¬Qrᵬt¨¯2.25°Ḅ±²⌴´sµ¦tt¨Ḅ¶ᘤᵫ¸ὁᓄḄ»¼ª᜜¬½Ḅ2/3.|]£¤¿⌕'ᙳª᜜¬Â3ᐗÃÄᑡᐭÆÇÈÉ£¤#¯2000Ê.Ër(1))ÌÍÎᵬt¨ª᜜¬ÏÐt¨ª᜜¬Ñ(1g2=0.3010,1g3=0.4771)(2)©£¤Ìᡠª᜜¬ᨬv?©ᵬஹ&§t¨ᔜª᜜¬ØvᐗÑ(3)©£¤ᑮ2003lᔲÙᐭÆÇÈÉ£¤Ñ§2ᦪᑡḄÛᔠÜᵨஹÝÞ⌕É1.ᦪᑡᙠßᦪà4M▭¦âᨵḼäåḄÜᵨæ0çᦪஹèéஹ=H}ஹXêஹÝᦪஹëìíî4Z᪆ðîñᨵḼòᑗḄᐵõö÷ᦪᑡḄÜᵨឋË⚪ùúû=üᡂßὃþ⚪Ḅÿ᝞2001ὃ(21)⚪.2.ᦪᑡᔠ⚪⌕ᨵḄẠ⌕ᨵ!Ḅᦪ"#$%&Ḅᦪ"'(ᱯ*+,-./'(%ᑖ᪆2⚪32⚪Ḅ'(.℉5ᦪ"67ᑭ9ᑏ;<=>☡@AḄBCDEF᪵⚪HBIJ⚪ᑖKLM•OPQ2⚪RSTᑜVTᑜWX.ᐸIᐵ[+\M]ᜧ_`+0).(1)hf(x)Ḅß×ᦪf'(X)áᐸSâãÄa1=3aan=f1(a„).+lÆb.=(aa/a„+a),ᦪᑡëb0ìḄ_n⚗%KSï±&S.¤(7/8)ḄᜧòicóḄ|}.ÕOô+<⍝ᦪᑡ¤×ᦪḄᔠ⚪✌ᐜ§Çdᙢhf-'(x)áᐸSâãᐸùᵫa=f-'n+l

10(a)ᑨ³ᦪᑡanḄឋ$wûᵫbn=(an-a)/(a+a)ᑨ³ᦪᑡbjḄឋ$.nn(1)üy-x=Jx?-a?~ýþv᦮ᳮx=(y2+a2)/2y.y—x=y—(y'+a2)/2y=(yz—a2)/2y=((y+a)(y—a)/2y)>0,yeaᡈaWy<0.ᦑf'(x)=(x2+a2/2x),ᐸ[—a,0)u[a,+°°).(2)Va„=f-'(a஺)=(a„2+a2)/2a.+1nb„+>=(a„+i—a)/(a„+a)=•••=((aa)/(a„+a))2+l=b„2.ai=3a,b,=(a1—a)/(a1+a)=(3a—a)/(3a+a)-(1/2),/.b„=(b„2=(b„J22=(b„-)23=-=(b,)2"-'=(1/2)2….3S=b,+b+-+b„=(1/2)+(1/2)2+(1/2)22+[(1/2)25+(1/2)2'+-n2+(1/2)2"-1].ᑮ2"'=(1+1)"-I=1+Cl^+C2„-,+-+C„-"-1.n1ᑣn42"T>1+C'.T+C)TMI+(n-1)+[(n-1)(n-2)]/2>n+1.(1/2)2"'<(1/2)n+1.S<(1/2)+(1/2)!+(1/2)22+[(1/2)23+(1/2)2'+-+(1/2)2n-1Jn+l3GḄnGN,n4HᡂJ.K2LMNᦔPQRSᦔPTUVᙢᢗᐭZ[\]^᝱`᛻bcd%eUfghij.᪷lmᑜopqᢗᐭ800rᐗ%tupᢗᐭvwLpxy(1/5).opqᙢghjᦈᐭ{|400rᐗ,ᵫ4~⚗bc3ghjḄ\ᵨ⚜|tḄghjᦈᐭupNwp(1/4).(1)cnpᑁ(opq5p)ᢗᐭa“rᐗghjᦈᐭbrᐗ.ᑏTa“ஹb஺Ḅ⊤nE(2)yRnpghjḄᦈᐭᢗᐭ(2001pᐰὃ⚪)⍝ᦪஹஹ¡ᔠḄᦪᑡ£¤Ḅ¥▭§ᵨ¨⚪.(1)51pᢗᐭ800rᐗ52pᢗᐭ800X(1—(1/5))rᐗ…5npᢗᐭ800X(1-(1/5))n-lrᐗᡠ%npᑁḄᢗᐭa„=800+800X(1-(1/5))+-+800X(1-(1/5))n-'=800[1+(4/5)+(4/5)2+(4/5)3+…+(4/5)n-']=800X[1-(4/5)-]/[1-(4/5)]=4000X[1-(4/5)"].51pghjᦈᐭ400rᐗ52pghjᦈᐭ400X(1+(1/4))rᐗ…5npghjᦈᐭ400X(1+(1/4))-Trᐗ.ᡠ%npᑁghjᦈᐭb„=400+400(1+(1/4))+-+400X(1+(1/4))"-'=400X[1+(5/4)+(5/4)24-----(5/4)I]=16OOX[(5/4).(2)cyRnpghjḄᦈᐭᢗᐭᑣᨵb"a”>0,BP1600X[(5/4)…]-4000X[1-(4/5)"]>0.

11ᓄ°d᦮ᳮ5X(4/5)n+2X(5/4)n-7>0.c*=(4/5)n,ᑣᨵ5x2-7x+2>0.²xV(2/5)ᡈx>l(³´).ᵫ(4/5)n<(2/5),n25.K3Vᙢµ1998p¶·ᨵ¸¹º»Ḅ☢½a(¾2),ᐸ¿ᓻÁº»ᓰ(1/4),äᓫᐗº»ᓰ(1/3).~ᙢµÅƺ»ᦋ⌼|ᑜᙠ5pᑁᐰÊË◀ᓻÁº»(upË◀ḄᦪÍÎÏ)d3·ᨵḄäᓫᐗº»%21%ḄpÐ᳛Æbc.ᵨPn(m2)⊤Ò5np~ᙢµḄ¸¹º»☢½.(1)ᑖÔÕTP1ஹP2ஹP3(Ö◤ᑡØᓄ°)d9:TPnḄ|ÕDE(2)ᓻÁº»ᐰÊË◀tyÙÚypÛ~ᙢµ¸¹º»☢½ḄpÜᙳÐ᳛10%?(Þßᑮp.%àᦪlá⚪âὃ1g2=0.3010,1g3=0.4771,1gl.1=0.0414,1g2.5=0.3979)(1)5np~ᙢµ¸¹º»Ḅ☢½Pnᵫ(Êᑖ᪀ᡂäᓫᐗº»☢½äᒕæḄᓻÁº»☢½(ᐸ纻☢½.᪷lèᐵêPi(a/3)(1+21%)+(2/3)a-1/(4X5)a,P=(a/3)(1+21%)24-(2/3)a-2/(4X5)a,2P=(a/3)(1+21%)(2/3)a-3/(4X5)a.3f(a/3)(1+21%)n+(2/3)a-(n/20)a(n=l,2,3,4),P=I(a/3)(1+21%)"+(2/3)a-(1/4)a(n=5,6,7,•).n(2)cL1998p¶Õëxptº»☢½ḄpÜᙳÐ᳛10%,ì⚪ᨵ(a/3)(1+21%)*+(2/3)a-(1/4)a>a(1+10%)x,ᓽ4(1+21%)x+5>12(1+10%)x.í1.l"=y,*ᐭᓄ°4y2—12y4-5>0.y>(5/2)ᡈyV(1/2)(î1.U>1,ᦑ³´).ᵫ1.lx>(5/2),x>1ogi.12.5=(1g2.5/1g1.1)w9.6.ᓽᓻÁº»ᐰÊË◀tyÙ5pÛpÜᙳÐ᳛10%.äஹï⚪ðñ1.òóᦪᑡôajḄõn⚗QSn=n?+n,ᑣP(l,a஺ஹQ(2,a?)ö"Ḅ÷øḄù᳛().A.1B.2C.3D.42.ú÷)()û(üÐᡂwᦪᑡᑣ().A.(üвw345B.(üвw1'þ3C.ÿ┦Ḅ-/2D.ᜧ┦Ḅ(ஹ1)/2

123.ᙠAABC%tgA(-4+,⚗%4+.⚗Ḅ/0ᦪᑡḄ102tgB((1/3)+5⚗%9+6⚗Ḅ/7ᦪᑡḄ17%ᑣ9:,;<().A.┦,;B.=,;C.>,;I)./Ὺ,;3T94./7ᦪᑡa.BḄ17C/D1,EFᔠM=xI,ᐸSnᦪᑡ2ḄJn⚗K%LMFᔠMḄᡠᨵPFḄ:ᦪ().A.2B.4C.7D.85.UVᦪᑡa„BḄJn⚗KSXY10g,(b+S)=n+l(b>0,bWl),`ijnln21+᜜Ḅ/D.6.da.B17qḄ/7ᦪᑡ%S.fḄJn⚗K%g(S„)/0ᦪᑡ%ᑣ4=.(2001hᐰjkὃ⚪)7.noᳫq12rkᜐtu%(vwxyḄkz{utkzḄ(1/3),ᑣᑮᐸ}~ᐳḄ.8.UVᦪᑡaJḄJn⚗KSn=(n/12)•(2n2+n).(1)2a0B/0ᦪᑡ%fḄ✌⚗K10(2)Ebn=sina•sina„+)•sina,2DḄᯠᦪn,{ᨵb.=(ஹnn+2/8)(-1)n-|.9.gpஹqX?Mx+/=oḄ᪷%pஹp-qஹqᡂ/7ᦪᑡ.(1)ᦪIḄ(2)da(1/n(n+1)),Sᦪᑡa஺)ḄJn⚗ḄK.logztWSKlogt)n10.£¤¥¦§¨©1995h8ᨴ24§¨⍝%Eὅ®¯d°°±²ᣩ´µ¶▤¸¹º»⚪%²°±¼2“⌼¿vÀr1000ᐗÂÃ%ÄÅ(Æ:ǹºÈɺÊËḄÌ%ÍÎwឋÐËᨵÑÒḄ»⚪%7᝞✌ᐜÕÐ40%ḄºË%ᒕØ•Ḅᑖ10hÄÚ.”᪷£Ü☢ÞßḄᩞᧇ%Íâu☢Ḅ»⚪2gãᓫåæµçèéḄᐰ°êëḄìᑭî13334ᐗាðÐᣵò40%Ḅ¹ºË%ᐸó°ᑖᔣõöÊËÕÐ.(1)ç÷ᔣõöÊËøùᐗ(úᶇ,åᨵᦔᦪý)þ(2)g¹ºÊËhᑭ᳛10%,ᢥᑭᐗ"($%ᑮ1ᐗ)᜛⚪*+,-

13ஹ⌱1⚪1.᝞4a>b,89:ᑡ<=>জafb3Bঝ(1/a)V(1/b)Bঞ2>2"B®1ga>1gb.ᐸLឤᡂOḄQ().A.জSঝB.জSঞC.জSটD.ঝSঞ2.XYh>0,[\⚪ᵬ>^_`ᦪa,bbcIa-bI^_`ᦪa,bbcIa—1I(1/e)*B.(1+x)<3/2)<(1-x)l3/2>C.1ogx(1—x)>1D.sin(1+x)>sin(1—x)4.[ᦪf(x)(x+1)2(xW-1),2x+2(-11,ᑣaḄ().(1/x)-1(x&l).A.(-8,-2)U(-(1/2),1)B.(-(1/2),(1/2))C.S,-2)U(-(1/2),+8)D.(-2,-(1/2))5.XYᏔᦪf(x)Ḅ-1,1,ᙠ-1,0)Qᦪif((3/4))2f(a2—a+1),ᑣaḄQ().A.{a|-1WaWl}B.{aIaeR}C.{a|0aWl}D.{aIa(1/2)}6.[{a.}Q✌⚗50,2Ḅᦪᑡ{b.}Q✌⚗10,4Ḅᦪᑡ¡a¢Sbk^¤Ḅ¥¦ᑁḄᨬᜧᙊḄ☢¬Sk.᝞4kW21,lmSr¯().A.n(2k+l)2B.Ji(2k+3)2C.n(k+12)2D.Ji(k+24)27.[ᨵ^_\⚪>(1)ᐵ¯xḄ<=xz+2ax+4>0µᑗxeRឤᡂOB(2)ᦪf(x)=—(5—2a)xQ¸ᦪ.

14¹\⚪(1)ஹ(2)ᨵiºᨵ_Q»\⚪ᑣ`ᦪaḄQ().A.(-2,2)B.(8,2)C.(—8,-2)D.(-oo,218.XYᦪf(x)=-2x+l,µ¯¼½zᦪq,¿À|f(x,)-f(x)|(q/4)29.ÅÆᓥÈ4ÉÊË✏Í5ÉÎ✏ḄÏÐS¯22ᐗÑ6ÉÊË✏Í3ÉÎ✏ḄÏÐSᜧ¯24ᐗᑣ2ÉÊË✏S3ÉÎ✏ḄÏÐÒÓÔ4Q().A.2ÉÊË✏ÕB.3ÉÎ✏ÕC.Ö×D.<%10.[aWb,a,b£R,ᑣᐵ¯xḄ<=xa24-(1—x)b2>[xa+(1—x)b]?ḄÛQ().A.0èéêᵨaìíèéêᵨbìíBgḄäåæᫀQ>èxîᵨaìíèxîᵨbìí(ᐸLaWb).-ᐜᑮðḄQ().A.gᐜᑮðB.ᵬᐜᑮðC.×xᑮðD.ᵬஹg<%ñஹòó⚪13.XYsin2a+sin2P+sin2y=l(a>BஹYᙳ┦ø)lmcosacosPCOSYḄᨬᜧ¯.14.XYú_<=>জab>0B®-(c/a)<-(d/a)Bঞbc>ad.¡ᐸL^_üᩩsý:Ḅ_üÔþᑣÿᡂ——Ḅ⚪.15.x£R+,ᵫX+(1/x)22,x+(4/x2)=(x/2)+(x/2)+(4/x2)23,…!ᵫ"#$ᡃ&'()*x+(a/xD2n+l(nwN),ᑣa=16.34(m,n)ᙠ78y:-(a/b)x-(2c/b)>?@(ᐸBaஹbஹc*7DEDFḄEGH!c

15*IG)!ᑣJ+KḄᨬJM*.EஹNO⚪17.QRSTUA.WXYZᵨ*10]ᐗ_B.abcde◅ZgShZᔠj*9ᓟᐗ_C.STḄnoZ*p•b2ᓟᐗ!p:b4ᓟᐗ!pEb6ᓟᐗ!rsᦪᑡ⌲bwx.yzRST{ᵨ|}b~ᨬᔠ!ᓽ{ᵨ|}bḄᙳZᵨᨬJ!ᑖ᪆AஹBஹCEZᵨ{ᵨYḄ.18.ᙊCU(x2/a2)+(y2/b2)=1(a>b>0)ḄH4AஹB.3C@ᙠ4P,NAPB=120°,ᙊCḄ᳛ḄM.19.:ᦪf(x)=ax"+bx+c(a>0)Ḅ>?¢xᨵ¤Ḅ¥ᐳ4!3f(c)=0,00.(1)¨©ª(1/a)¢cḄᜧJ_(2)¬U-2Vb<—1_(3)¯c>1,t>0Y!¬Ua/(t+2)+b/(t+1)+(c/t)>0.20.AஹBஹC±ABCḄEᑁD!y=ctgA+{2sinA/[cosA+cos(B-C)]}.(1)3»¼dᣚDḄ¾¿!yḄMᔲÁᓄ!¨¬ÃḄÄÅU(2)yḄᨬJM.Æ⚪ÇÈÉÄḄ¬Ê4!NË4!ÌÍᦪḄÎᔠ⚪Ïὃ⚪ḄÑ4.ÒÓḄ¼ÔÕÖᦪḄ×ØÈᑣ!ᑖᦣÊ4ÕNÚÊ4ḄᐵÜ.᝞Þß៉Ḅឋâ!ãäåæḄᱯ4!ᮣéêᵨ©ªஹᑖ᪆ஹÎᔠåæÇÈ!ãëìíîὃÕïð!ÊñᑮN⚪⌶ôḄ.⌕ᗐ÷ìíøᓄÁF!ᓽᓄùᳮ*ᨵᳮஹᓄᑖ*᦮ஹᓄÏ*üஹᓄýM*þýM!ÿẚ•ᐵ.ᙠᩭḄὃஹᨬஹḄᔠ⚪!ὃḄ"#$⚪%&'ᦪᐵ)ஹᐵ)〉+ᝯᵨ.ஹ/ᐗᙳ2!34◤⌕ὃ⇋Ḅ.§5Ḅᔠ$⚪ஹ:;⌕<4='ᦪஹ/>ஹ?@ஹᦪᑡஹ:ᦪBCᔠḄᔠ⚪!ὃᦪDḄ4E⚪F.G᝞I'ᦪḄJKLஹLஹᨬᡈᓫOPQRJSTUḄVWDXḄYZI[\]Ḅ^_ᐵ)ᐵὶḄa▭cᵨ⚪.deᔠ$⚪Ḅfghij!klS%&ᐵ)mnᐗḄ(apᑖrTᐗ)〉+tᵨ.ஹ/ᐗᙳ.ᐸ%&ᐵ)Ḅ4ᵨ⌶w!kজ᪷z⚪{ᩩ}~ঝᑨj~ঞᙳj~টzmTU(᝞cos஺ஹr᳛e)Ḅᨵឋ..ஹ⚪1{.'ᦪf(x)=xz+bx+c(b,cCR),BaஹBp@aᦪឤᨵf(sina)¤f(2+cosP)«0.(1)Ikb+c=—1~(2)Ikcª3~(3)¬'ᦪf(sina)Ḅᨬᜧp8,IbஹcḄ.k¯°(1),±²³b+c,◤´x?+bx+cḄxV1.¶Ḅ!ᐵ)⌕Ḅ!·ᐵ

16)ᦑ¹ºᵨ[»ᜳḄ½jᓽ¿Àf(1)>0,ÁÀf(1)wo.ᨵÂ(1),ᑣ.'ᦪḄ᪆¹ÅÆb,ᓽf(x)=x2-(1+c)x+c.pÂ(2),ᡃȹºᵨVQ<=É<ÊËḄijÌÍÎ+᎛ÐÑᑮ⌕I.ÓÔᑮIsina|Wl,lW2+cosBW3,¹ÕÖf(-1),f(0),f(3),᧕BØx=3+¹Ùᑮ(2),ÚÐÛÜYÝY◤᪵ᑏkf(x)=x(1+c)x+c=(x—1)•(x—c)WOᙠ1WxW3+ឤᡂ&x-cWO,ᓽxWcឤᡂ&.••CªXm»x3■¯°(3),✌ᐜᨵf(sina)=sin2a—(1+c)sina+c,ὃãä'ᦪḄᓫOឋÌÍÎ+᎛f(sina)Vᨬᜧ8.ᵫ(2)Bcª3,æç(1+c)/2ª2,ᦑf(sina)ᙠsina=-1+Vᨬᜧ8,ᓽ(ߟ1)'+(1+c)•1+c=8,Ùc=3,æçb=_1—c=—1—3=—4..'ᦪஹᐗ.ஹ•ᐗ.ièḄᐵ)é4êᑗìÈ·íὶ)·íîïðÙñ“BCóô”Ḅö⚪÷²øᡂpù?úὃÊ⚪Ḅñ"<.2ᙠᦪᑡûa”Ba,=a(a>2),üa.+ý(a„2/2(a„-1))(nGN).(1)Ika„>2(nGN)~(2)Ika„ᖪᑖ᪆.B(a„+,/a„)=(a„/2(a„—1))=(1/2)(1+(1/a„—1)),Cᵫ(1)a.>2,H[Jaᦑ(a„,/a„)<(1/2)(1+1)=1.+,-(3),ᵫ(2)a.+Ka஺#HakI3,ᡠKa>aa>aaL23.MU(a/a-i)=(a-i/2(ak-i-1))=(1/2)(1+1/(a-1-1))<(3/4).kkkkNOa„==aτ•(a/a,)•(a/a?)........(a/a-i)3.Ha>0,/.(3/4)(3/a),Pk<1g(3/a)/1g(3/4)+1.R⚪ᐙᑖTUVᙠ“YZ”Ḅ]^ᜐὃabḄcd1e.f(3)ghijk#lᨵ័-opḄqrs#tᜐuQvVw▎yz{⌱}ᩭ.3ᱥy=ax2—1ᙠᐵ-x+y=Oᡂ,Ḅ#ᦪaḄ.1.ᵫᑨ}.ᱥᐵ-1,Ḅ)vP(x,,y,)ஹQ(X”yz),PQḄ4vM(x„,y°).PQḄv=*+1>,ᵫ-PஹQᙠ#ᡠKy=x+b,ᨵ¡Ḅᦪ#ᓽP

17ax2—x—(1+b)=0.জᑨA=l+4a(1+b)>0.ঝᵫজPxo=(xi+x2/2)=(1/2a),y(I=x4-b=(1/2a)+b.flMG1,/.O=Xo+y=(l/2a)+(l/2a)+b,oᓽb=-(1/a),¤ᐭঝPa>(3/4).2.ᵫᙳ}.¡1,ᵫ⚪¦P‘y1=axi2-1,জy2=ax2-1,ঝ2(yi-yz)/(x—x)=1,(3)(2(y)+y2)/24-(xi4-x)/2=0.ট2ᵫজஹঝ¤ᐭঞஹটª«¦ᑮaWO,x!—x2W0,Pfxi+x=(l/a),ঠ2[xi?H-x22-—(1/a?)+(2/a).ডᵫ®ᐗᙳ᧕P2(X12+X22)>(XI+X2)2(X[WX2.)±ঠஹড¤ᐭP2(-(1/a2)+2/a)>(1/a)2,Pa>(3/4).3.ᑭᵨᙠ³ᑁ´(ᡈ᜜´)}.¡2,ᵫজ·ঝ#Pyτ-y2=a(x]+x2)(xi-x).2Xi—XzNO,/.a(x14-x)=(y1—y)/(x,—x)=1,222x=(Xi+x)/2=(l/2a).*/M(x0,y0)G1,02y0+xo=O,ᓽyD=-x(>=—(1/2a),NOPQḄ4MḄᙶ᪗v((l/2a),—(1/2a)).Mᙠᱥᑁ´#a(1/2a)(·(1/2a))—l<0,Pa>(3/4).(º»aVO,v¼½¾)R⚪¿ÀV᪀⌼ᐵ%ḄÃÄqᵨ.ஹÅ⚪ÆÇ1.·ÈÉÉ:ḄᕜËv2,·È┦Éva,ᐸÎÏËḄᨬÑv().A.2/(0+1)B.2/(+1-1)

18)2.x+'Õy—m=01ᙊx"+y2=1ᙠf·Ý▲ᑁᨵÈ¡Ḅ]#ᑣmḄQ().A.lb>l,p᝞஺ᵯb,Q®)(1/2(Iga+lgb),R=1g((a+b)/2),ᑣ().A.R+b2)/2D.b<(a2+b2)/20,b>0,a+2b=6,Mlj1og2a+210g2bḄᨬᜧQ.6.aஹRQᦪ#þ}ÿজIa+B|=|a|+|0|ঝ|a-p||a+0|;ঞ|aI>2,B|>2ஹ;@|a+B|>5.ᐸḄᩩ!"ᐸ#$"ᑏ&'()*Ḅ+,⚪..x=2cos0,.x=1+31,=e?@ᦪBCḄDᑮFG"7.5ᙊ[y=sin0y=-1-4t(t?@ᦪ)ḄLMḄᨬᜧP?,8.Rpஹq?TUx'—'/idx+t2=0ḄZ᪷"\p,p-q,qᡂ^_ᦪᑡ.(1)a)ᦪtḄPb(2)can=(1/n(n+1)),SnᦪᑡeanfḄgn⚗i"aj1og2twSnV(1/2)1og2.t9.opf(x)=log(x+1),g(x)=21og(2x+t)(a>0,aWl,t£R).nn(1)vt=4,xG[0,1)x"ag(x)-f(x)ḄᨬPb(2)vOVaVl,xe[0,1)x"f(x)Ng(x)ឤᡂ|"aZᦪtḄ}P.10.opᦪf(x)=(ax2+l)/(bx+c)(a,b,c£R,\a>0,b>0)?᜻ᦪ.

19(1)Rx>0x"f(x)ᨵᨬP2,aabḄᐵb(2)aj(1)Ḅᩩ!"vxm(1/6)x"f(x)ᦪb(3)Rf(x)ᙠx>0xḄ⌴?[(1/2),+8),aaஹbḄP"axᦪḄ⊤.§1^Ḅj(+)+ஹ⌕DZj^Ḅᶍ?ᑮᜧḄᜧᡈᜧᑮḄ¡¢U.v¡Ḅ〉¤?j⚪Ḅᐵ¥ᡠᙠ.j^✌ᐜ©ὃ⇋¬ᔲ©ᵨ_¯°iᙳP^°"²ᵨ³ஹ´ᐗᙳP^¶·⌕"ᑖ᪆°ᡈ^º»ᓄ°ᨵᑭ¾•ÀÁÂᡂj⚪ÃÄ"ÅÆÇÈɾn஺(n0£N)ḄËᯠᦪnḄ^ÍÎὃ⇋¬ᔲᵨᦪÏÐÑ°jÒ.³ஹÓ⚪ÔÕÓ1jᑡ^(1)opaVbVc,ajazb+b2c+c2aÔÕ(1)ὃ⇋ᵨ×Øj°.,/(azb+b2c+c2a)-(ab2+bc2+ca?)=(a2b-a2c)+(b'c-ab2)+(c2a-bc2)=a2(b-c)+b'(c-a)+c2(a-b)=a21(b-a)+(a-c)]+b2(c-a)+c2(a-b)=(a-b)(cz-a2)+(a-c)(a2-b2)=(a-b)(b-c)(a-c)<0,(Vab,a=b,ñ?a0,/.a"b'2a'bñÎ}óᦪÙ×Ø_¯.᝞õö÷⚪øù3úûḄüÂ"ýᨵRa,b,cWR+,ajaBbbc(abc),8+b+c>/3.þ᜜᝞(ab)(a+b)/2^abbaW;(abc)<«*+b+c/3@20.b2b.2c^ab+c-ba+c-c.c2OVaVLx2+y=0,loga[(ax+ay)/2]<(1/8).(*)ᵨᑖ᪆.V0

20log„(a'+a-x2)/2a"/a>.(**)᝞7ὶ9ᑮ;ᐗᙳ>?@ᨵ(ax+a-x2)x<1/2><,-<1/2))2+U/8,=al2ll=aa(V0x=-xz=^>x=0,-1;ঝx=(1/2).•.,জঝ?WXYᡂ[.••?(**)\]ᓽ^?ᡂ[.ᑖ᪆_`ᵨ“⌕$◤”Ḅdᙠfghijkᵨ“=*”lJmn⊤p.᝞7qᢕstupiḄvw@xyz᝞{|}Ḅ~G.V0(1/2)v2«+l.ᵨᦪ.f(n)=(4/3)•(6/5)•(8/7)....2n/(2n-l)(2WneN).(1)n=2Yfফ=(4/3)>(1/2),nᡠ?ᡂ[(2)Ꮇn=k(k>2)Yf(k)>(1/2)J2A+1,¡n=k+1Yf(k+1)=(4/3)•(6/5)•(8/7)....2k/(2k-l)•(2k+2)/(2k+l)=f(k)•(2k+2)/(2k+l)(᪀⌼⌴¥)J2¦+1.>(1/2)(2k+2)/(2k+1)§¨ᵨᎷ©(2k+2/J2ª+1)=(+3/2).(2k+2/2k+1•+3)=(1/2)(«}¬᪗)1~(2.+2)2(¯஺/2).1(2+1)(2)+3)=*+8—+4=(±+3/2).²47+8u+3>(1/2)¦+1)+1ᓽ³=1<+1Yᡠ?]ᡂ[.´ᔠ§1©ஹ§2©^?ᡂ[.ᙠup}ghiᡃ¸¹^?Ḅº»¼Nf§n©,½᪵¿kÀ\}ḄÁᑏghᜧN|ᓄ,

21ᵫÆÇ}ᣚᐗḄ|ᓄÉᦔ.ËÌÍ⚪᝞7WÏ9ᑮ᪀⌼Ðᦪg(n)=(2f(n)/v2«+l),ÑẆÓg(n)ḄᓫÕឋ@k×ØÙN|}Ḅ}Ú.᜻ᝯḄËᏔḄÞᐭàWzᡂᓝᑖ|ᣩḄãäåA=(4/3)•(6/5)•(8/7)....(2n/2n-1),B=(5/4)•(7/6)•(9/8)....(2n+1/2n),᧕A>B,/2»+lé(JᨵA>ஹêë=13>d/2)V2«+l.ஹS⚪îï1.m#n,x=m*—m3n,y=rPm—n",ᑣxஹyḄᜧHᐵö÷().A.x>yB.x=yC.xᨵᐵ2.{ᑡú⚪i?ûüḄ÷().A.a>Ih>b2B.a>b=^>a<5/3>>b<5/3)C.x>y3x>2yD.ac2>bc2a>b3.a(1/b)&1/|aI>1/|bIᙳ"*ᡂ,B."#$1/(2—15)>(]./2)&1/|2|>1/|1>|ᙳ"*ᡂ,C."#$1/(2-1?)>1/2&(2+(1/1))2>(6+(1/2))2ᙳ"*ᡂ,3D."#$1/IaI>1/IbI&(a+(1/b))2>(b+(1/a))?ᙳ"*ᡂ,4.4⚪6জx+(1/x)Ḅᨬ9:26ঝ(x?+2)/J%?+1Ḅᨬ9:>2?ঞ(xA+5)/&+4Ḅᨬ9:2?@2-3x-(4/x)Ḅᨬ9:2.ᐸAḄ().A.জB.ঝC.ঝঞD.জঝঞট5.FGHᦪzAKL|z,I=1,MzN2i,PIQ|z,+zIḄᨬᜧ:.26.ᑁTUVW>RḄᳫZ[\]ᨬᜧḄᙊ_\Ḅ`______.7.FGIaI<1,IbI<1,ᑣIa+bI+Ia—bIc2Ḅᜧ9ᐵe.8.gGa,be[0,1]>jka/(b+1)+b/(a+1)+(1-a)(1-b)Wl.9.opqrs.ᩭuvwxAyz{|}ḄᙢA.ᵬwxᵨᑮAḄ{V9aḄ

22A{V9bḄ6wx9aḄᑮAḄ{V,ᯠ9bḄ{V.•vwxᐜᑮA.10.ᙠu|ᦪx,yAᐭu|ᦪaQa,x,a,,a,yᡂ#ᦪᑡ?᜜ᐭu22|ᦪb,,b2,x,b,,b2,yᡂ#¢ᦪᑡ.jk/2+i)Y(a,+l)(a+1).2¤⚪*¥¦{ஹ⌱©⚪1.᝞«a>b,¬ᑡ"#$6জafb'?ঝ(1/a)<(1/b)?ঞ2'>2,?®1ga>1gb.ᐸឤᡂ,Ḅ().A.জ&ঝB.জ&ঞC.জ&টD.ঝ&ঞ2.FGh>0,´4⚪ᵬ>6u|µᦪa,bKLIa-bI6u|µᦪa,bKLIa-1|(1/e)…B.(1+x)<3/2><(1-x)(3/2)C.1og(1—x)>1xD.sin(1+x)>sin(1—x)4.´Åᦪf(x)(x+1)2(x^-1),2x+2(-11,ᑣaḄÇ:É>().(1/x)-1(x21).A.(-co,-2)U(-(1/2),1)B.(-(1/2),(1/2))C.(-8,-2)U(-(1/2),+8)D.(-2,-(1/2))5.FGᏔÅᦪf(x)ḄÌÍÎ>Ï-1,1Ð,ÑᙠÏ-1,0)rÒÅᦪA[f({(3/4))2f(a2-a+l),ᑣaḄÇ:É().A.{a|-IWaWl}B.{aIaeR}C.{a|0WaWl}D.{a|aH(1/2)}

236.´Öan×✌⚗>50,>2Ḅ#ᦪᑡAÖbn×✌⚗>10,>4Ḅ#ᦪᑡAas&bk>uÛḄÜÝᑁḄᨬᜧᙊḄ☢]ß>Sk.᝞«kW21,¶·Sk#U().A.n(2k+l)2B.JI(2k+3)2C.n(k4-12)2D.JI(k+24)27.´ᨵu|4⚪6(1)ᐵUxḄ"#$x'+2ax+4>0â•ᑗx£Rឤᡂ,?(2)Åᦪf(x)=—(5—2a)xåÅᦪ.4⚪(1)ஹ(2)ᨵ[æᨵ•|ç4⚪AᑣµᦪaḄÇ:É().A.(-2,2)B.(—8,2)C.(-oo,-2)D.(-8,-2]8.FGÅᦪf(x)=-2x+l,âUèéᦪq,ëIf(Xi)-f(x)I(q/4)29.îᓥðA4ñòó✏c5ñõ✏Ḅö÷&9U22ᐗAù6ñòó✏c3ñõ✏Ḅö÷&ᜧU24ᐗAᑣ2ñòó✏&3ñõ✏Ḅö÷¢ú«().A.2ñòó✏ûB.3ñõ✏ûC,üzD."Ì10.´aWb,a,b£R,ᑣᐵUxḄ"#$xa'+(l—x)b'>[xa+(l—x)b]”Ḅþ().A.0?@ABᵨaEF+?@ABᵨbEFH.Ḅ9:;ᫀ=>?@2IᵨaEF+?@2IᵨbEF(ᐸKaHb).MNᐜᑮPḄQ=().A..ᐜᑮPB.ᵬᐜᑮPC.12ᑮPD.ᵬஹ.RST

24UஹVW⚪13.YZsin2a+sin2P+sin2Y=l(a,BஹYᙳa┦c)+cosacosgCOSYḄᨬᜧ$gh.14.YZijRgk>জab>0Hঝ-(c/a)<-(d/a)Hঞbc>ad.qᐸK/jraᩩt+uvḄ?jrawx+ᑣzq{ᡂj}SḄ~⚪.15.YZxeR+,ᵫRgkx+(1/x)>2,x+(4/x2)=(x/2)+(x/2)+(4/x2)23,…+ᵫ6ᡃzqax+(a/x")n+l(neN),ᑣa=.16.(m,n)ᙠy=-(a/b)x-(2c/b)(ᐸKaஹbஹcacicḄi+ca)+ᑣ/+/Ḅᨬ#$a.iஹ⚪17.¡>A.¢£2¤ᵨa10¥ᐗ>B.§¨Q©ª◅¤¬¤ᔠ¯a9ᓟᐗHC.¡Ḅ²³¤a´•¨2ᓟᐗ+´U¨4ᓟᐗ+´i¨6ᓟᐗ+¶g·ᦪᑡ⌲¨º».N¼¡½ᵨ¾¿¨ÀÁᨬᔠÂ+ᓽ½ᵨ¾¿¨ḄÄᙳ¤ᵨᨬ#+Åᑖ᪆AஹBஹCiȤᵨɽᵨ2ḄÊË.18.YZÍᙊC>(x2/a2)+(y2/bz)=1(a>b>0)ḄÐ/Ñ=AஹB.CÒᙠP,ÓNAPB=120஺+ÕÍᙊCḄÖ×᳛ḄÙ$Û.19.YZUÜÝᦪf(x)=ax?+bx+c(a>0)ḄßxÐᨵ/jR1Ḅàᐳ+f(c)=0,ÓOVxVc2+f(x)>0.(1)Mäå(1/a)ßcḄᜧ#H(2)æç>-2VbV-lH(3)èc>1,t>02+Õæ>a/(t+2)+b/(t+1)+(c/t)>0.20.YZAஹBஹC=êABCḄiᑁc,y=ctgA+{2sinA/[cosA+cos(B-C)]}.(1)ðñ©ᣚ/jcḄóô+yḄ$=ᔲöᓄ+MæçøḄwxH(2)ÕyḄᨬ#$.ù⚪;úûwRgkḄæç=ü+Rgk=ý+þÿᦪḄᔠ⚪ὃ⚪Ḅ.ḄᦪḄᑣᑖᦣḄᐵ.᝞"#៉Ḅឋ&'()*Ḅᱯᮣ-.ᵨ01ஹᑖ᪆ஹᔠ)*4'5678ὃ9:;ᑮ⚪⌶>Ḅ.⌕ᗐA67BᓄDEᓽᓄGᳮIᨵᳮஹᓄᑖI᦮ஹᓄLIMLஹᓄNOPIQNOPRSẚUVWᐵ.ᙠYᩭḄὃ[\]_ஹᨬPஹUḄᔠ⚪abὃḄcd⚪efgᦪᐵhஹᐵh〉jᝯᵨlஹmᐗᙳPpqr◤⌕ὃ⇋Ḅ.u⚪"vwxWஹ⌱z⚪1.3~ᦪgᦪf(x)=2sinaxᙠ[-(n/3),(n/4)]⌴().A.0<3W(3/2)B.0<<0<2

25C.OVsW(24/7)D.3222.arcsin(cos(5^/4))ḄP().A.—(n/4)B.(3n/4)C.(n/4)D.-(3Ji/4)3.¥gᦪf(x)=asin(ax)+acos(ax)(a>0)ḄᨬᜧP2ᑣf(x)Ḅᨬ©~ᕜ«I().A.(Ji/4)B.(JI/2)C.JID.2n4.gᦪf(x)=Msin(G)X+6)(>0)ᙠ±²³a,bµgᦪ¶f(a)=—M,f(b)=M,ᑣgᦪg(x)=Mcos(sx+6)ᙠ±²³a,bµ±().A.gᦪB.¹gᦪC.º»¼ᨬᜧPMD.º»¼ᨬ©PWM5.᝞½gᦪy=f(x)¿Àf(-x)=-f(x),¶ᨵf(x+(ᑍ/2))=-f(x),f(x)Ḅ᪆ºR().A.tg(x+Ã)B.sin(x+n)C.sin2xD.cos2x6.ÄÅsina>sinB,Æᑡ⚪ᡂfḄ().A.¥aஹBÉ,Ê▲Ìᑣcosa>cos3B.¥aஹBÉlÊ▲Ìᑣtga>tgBC.¥aஹ3ÉmÊ▲Ìᑣcosa>cosBD.¥aஹBÉÍÊ▲Ìᑣtga>tgB7.gᦪy=-xcosxḄÎᑖÏÊ().vÐ4Ï3-78.ÄÅ᜻gᦪf(x)ᙠ³-1,0µIᓫÔ¹gᦪÕaஹ8I┦ÌmÌE×ᑁÌᑣ().A.f(cosa)>f(cosP)

26B.f(sina)>f(sinB)C.f(sina)>f(cos3)D.f(sina)0)Ýᓫèé((ᑍ/2),-1)ᡂIÏÊḄWÝOê[ëᑣ©Ḅᨬ©PI().A.(n/6)B.(JI/3)C.(5n/6)D.(4n/3)11.ÄÅaÉlÊ▲ḄÌíîÍÝïজtg(a/2)>sin(a/2)>cos(a/2)ñঝsin(a/2)>cos(a/2)>tg(a/2)ñঞtg(a/2)>cos(a/2)>sin(a/2)ñটcos(a/2)>tg(a/2)>sin(a/2).ᐸ[º"ᡂfḄ().A.জঝB.জঞC.ঝঞD.ঞট12.öfi(x)=cos(2x+(n/3)),f(x)=cos(3x-(2n/3)),âf1(x)÷fz(x)2ḄÏÊùRÆmúDᣚïজᐜâfl(x)ÏÊᔣäåæ(ᑍ/3)ÝᓫèþâÏÊᔜḄᙶ᪗ᑮᩭḄ(2/3)ঝᐜ3(x)ᔜḄᙶ᪗ᑮᩭḄ(2/3),ᔣ(ᑍ/3)!ᓫ#$ঞᐜf2(x)ᔣ'(ᑍ/3)!ᓫ#(ᔜḄᙶ᪗)*ᑮᩭḄ(3/2).,-3(x).f2(x)/ᔠḄ1ᣚ!ᦪ4().A.0B.1C.2D.3;ஹ=>⚪13.@ᦪf(x)=sin(2x+(n/3))ᙠ[0,n)ᑁḄᓫIJKL4.14.@ᦪf(x)=(l+sinx-2sin2((ᑍ/4)—(x/2))/4sin(x/2))ḄᨬRSᕜU4V.15.(1/sin40°)4-tgl0°Ḅ[4.16.]^_ᑡa⚪জcᙠdᦪx,-sinx+cosx=(3/2)$ঝgaஹB4iV▲k(la>B,ᑣcosaVcosB$ঞ@ᦪy=sin((2/3)n+(7x/2))4Ꮤ@ᦪ$টgcosacos|3=l,ᑣsin(a4-3)=0$ঠ@ᦪy=sin2xḄᔣ(n/4)!ᓫ#(vᑮy=sin(2x+(n/4))Ḅ.

27ᐸxSya⚪Ḅz{4.|ஹ}~⚪17.1+cosa-sinB+sinasinP=0,1—cosa-cosB+sinacosB=0.sinaḄ[.18.(sinB/sina)=cos(a+p),ᐸxaஹp┦k.(1)tgB=(sin2a/3—cos2a)$(2)tgBḄᨬᜧ[.19.ᙠABCx(|kAஹBஹCᡠḄᑖaஹbஹc,lb?=acᡂ.y=(1+sIn2B)/(sinB+cosB)Ḅ[.20.ᙠAABCx(cosA=(5/13),tg(B/2)+ctg(B/2)=(10/3).(1)cos(A-B)Ḅ[$(2)cos(A-B/2)Ḅ[.§2;☢kVஹ⌕1.;☢kḄ⚪¡◤£^;☢kḄ☢k(ᨵ¥¦§¨©ᑭᵨ¬☢®¯°.2.±²³´;☢kḄ☢kḄVµ£¶জ·¸¶$ঝ|ᚖº·ᳮᐸ⌮·ᳮ$ঞ£½Ḅᚖ☢.3.¾¿ÀÁ_(Â◤ÃV!k;☢kḄ☢k.ÄÅÆÇ⁚É⚪ʲ⚪8Ë4.;☢kḄ0஺

28&'.•.)☢A,*BiD-B,)☢B-DBi-C-⊡'.•.)☢B-DB,-C60°.0⚪ᡭẚ4ᙠ6☢B,DB7B.DCᑁ᪀:)☢Ḅ☢Ḅ;<=>'ᑭᵨ6☢B,DCḄAB☢A,B.D,CD=>EFᣩ.H2IJK┵S—ABC,┵S'—A'B'C'ḄP☢%QR'ᐸTᑖVV,7)☢A-SC-BRXaY)☢A'-S'C'-B'RX6,Za>B.\ᢣ^V,7_Ḅᜧaᐵc'defgḄhi.j=klmnK┵ḄP☢oᐰRḄK&'ᡠrstḄTuᐰᵫstḄwS07S'0zḄᜧayz.᝞|7T3,l0F=O'F',ᡠrSO,S'O'ḄᜧauᐰᵫSF7S'F'Ḅᜧayz'CF=C'F',ᙠRt^SFC7RtaS'F'C''SF/CF=tgZSCF,S'F'/CF'=tgZS;C'F',ᡠrSF7S'F'ḄᜧauᐰᵫNSCF7NS'C'F'yz.ᙠRtZXBDC7RtZXB'ூ)'C''sinZSCF=BD/BC,sinNS'C'F'=B'D'/B'C',BC=B'C',ᡠrNSCF7NS'CF'ḄᜧauᐰᵫBD7B'D'Ḅᜧayz.|7-13ᙠRt^DEB7RtZM)'E'B''ZEDB=(a/2),NE'D'B'=(B/2),sin(a/2)=BE/BD,sin(B/2)=B'E'/B'D',ZBE=B'E',0<0/2

29Xo'tgNDGB=(BD/GB)=1,NDGB=45".Â0H')☢ḄᙠIJ|&dÃ^Ä(ᓽÅ)☢)'=ÆᐵÇo·“”'◤⌕Ì:^ᩭ.Î;ÏÐÑÒÄ“Å”)☢ḄᨵrÑKÔ⌶Ök(1)᪷Ø)☢mn☢ᑁḄmᩩQ±®¯ÒÄ(᝞0H)Y(2)᪷Ø)☢mn☢ᑁḄmᩩ#®¯ÒÄY(3)⊡&᪀:ÙÒÄ.Úᐰ☢ÛÜᑖ᪆'µÞÒÄ0⚪|7-14ḄNEACßoᡠ)☢Ḅ☢.àá'ᵫFB=BC=AB-FA_LAC.EC_1_☢ABC="FA_LEC,Xo¤DᑮFAIEA,ᓽNEACoᡠ)☢Æ☢.ä᪵æ⚪ßµᓝᑖFᓫ4.ᵫ°¤é'ᡃtᙠὃ⇋)☢Ḅ☢í'î“ᐜ·ð:”.Kஹ᜛⚪òó1.᝞ô*n)☢Ḅmn6☢ᑖV,´*n)☢Ḅmn6☢ᚖ®'ᑣämn)☢Ḅ☢Ḅᐵco().A.QRB.-⊡C.QRᡈ-⊡D.yz2.ᙠ®ᙶ᪗c'IJA(2,3),B(-2,-3),øxúÌᙶ᪗☢ᢚᡂ☢0Ḅ)☢AOxB,CNAOB=90°,ᑣcos9Ḅÿ().A.-(1/9)B.(1/9)C.(4/9)D.-(4/9)3.ᙠ┵P-ABCPC_L☢ABC,ZACB=90°,AOBC,DஹEᑖ#ABஹBCḄ%.&PA'DEᡠᡂḄ*+a,PD'-☢ABCᡠᡂḄ*+8,/☢*P-AB-CḄᜧ1+Y,ᑣaஹBஹYḄᜧ1ᐵ5().A.aVBVYB.a

30;7-155.PYZ/☢*ḄYZ☢aᑁᨵY%A,\ᑮḄ^_\ᑮ`YZ☢8Ḅ^_Ḅ2aᑣbZ/☢*Ḅcᦪ.6.ef┵D-ABCḄZg☢'☢ᐰWiAB=AC=ஹQBC=2,ᑣjBC+j☢BCD'☢BCA+☢Ḅ/☢*Ḅᜧ1_______.7.AABCḄ•kBCᙠ-☢aᑁ⚔%Aᙠ-☢a᜜ZABC=60°,ZiABCᡠᙠḄ-☢'-☢aᡂ30°Ḅ/☢*ᑣABᡠᙠḄop'-☢aᡠᡂḄ*ḄAqr_______.8.᝞;7-17,ᙠ┵S-ABCSA_L☢ABC,AB1BC,DEᚖo-ᑖSC,iᑖ#uACஹSCXDஹE,vSA=AB,SB=BC.wjBD+jBDE'BDC+☢Ḅ/☢*Ḅcᦪ.;7-179.᝞;7-18,AB஺஺ḄoxC+ᙊᕜ{|}Y%.PA_L-☢ABC,AB'ACḄᜳ*a,/☢*A-PB-C+B,PB'-☢ABCᡠᡂḄ*+Y.;7-18(1)P%AᙠPBஹPC{Ḅᑖ#EஹF,wNAEF=B(2)ctgactgf3=siny.10.᝞;7-19,ᙠ☢*CḄ┵S-ABCDZABC=90°,SA_L☢ABCD,SA=AB=BC=1,AD=l/2.

31HAD;7-191w┵S-ABCDḄ2w☢SCD'☢SBAᡠᡂḄ/☢*ḄAᑗr.᜛⚪Bὃ⌕ὃḄᳮ¡¢ஹ£¤¥¦¡¢ஹ§ᣩ©ªḄ«¬¡¢®ᔠ«ᵨᦪf±Ḅ¡¢.op'-☢Ḅ²³⚪´+Y⍝ᜧ⚪ᙠὃ¶ᔁ¸¹º»¡¼½ᓫYḄᦪf±¿ᱫ½ᑮPÁZÂ⌕Ḅf±%ὃ«ᵨf±ᮣIJÅÆ⚪Ḅ¡¢.Y⍝ÇḄ¶⚪ÈᒹÊp☢ᐵ5j*ஹ^_ஹ☢ஹW.᝞ËÌᙠÍ☢ÎjὃÏN¶⚪ÐᐹᨵYÒḄÓcÔÕcÖÎᜧ׶⚪ḄᮣÄឋÙÚ⌕ÛjÜÝḄÂÞ.ßà⌕áâÇjãä%1.©ªåâÔᮣÄ«ᵨæçᭆéஹÒᳮ.ᭆéஹÒᳮᑨëᳮḄæẠ¼ᨵíîïᳮ²ð©ªÔÓñÖ¡òóôᳮஹõÏö÷ø¡ᮣÄᙢÎjúᵨ.²³ûäü⚪YýþᨬḄᭆஹᳮᝯᙢᳮḄᣚᑮ⚪ḄḄ.2.ᵨᓽ"#$%&'ᳮ()*+■-./0ஹ/123.45ᑖ᪆8ᐗ:Ḅ;<ᐵ>?@A⚪2BCDEᐵF⌕Ḅ.HIJKজMNOᓽPQRMSஹTUV᪀ᔠᳮḄ/0YZPᑖ᪆[\Ḅᐗ:Ḅ;<ᐵ>]^_ᐵ>`aঝcᣚOᓽPQRᙢ4ᑖᒘஹ⊡ஹᢚgஹhiஹjk`Kঞmn2ὃOᓽPmnpq⚪2BrsVt]ᦪVᔠk`.3.vwxyF⌕Ḅᦪz2{|}.ᓄ2{DᨬஹᨬF⌕Ḅᦪz2{|}.⚪T▭DᳮḄᣚ]ᓄ.xᳮḄVDᳮḄᩩ.ᡈ◤⌕ᓄ(i☢Ḅ⚪ᐭᑮ¡ᨵḄ£¤V᪀¥ᵨᡃ\ᡠ¨៉Ḅi☢ᡈª«Ḅ|}¬.ᦪ2{ᙠ¯ᨵḼ±²Ḅ³ᵨU´µ^ᦪஹ«ᦪ¶$⚪ᓄ(·ᦪᡈª«⚪¸.ᦪḄ¹ᐭº»¼½¤]¾¤Ḅ᫑᫡Á⚪ÂᐹᨵᮣÅឋ.ḄÇI2{|}ᨵKজÈ}?Éx}aঝᑖÊ}aঞᓄ}aট᪀⌼}Ç⌕ᒹÎÏnUஹ☢ஹḄÐÑᒹÎᑖᒘ]⊡KঠÓᦪஹ|Ô]ᦪḄ2{|}.

324.@A]ÕV⚪Ö×.تᦪzÙÚᦟz³ÜÝ@A]ÕV⚪ḄÖ×vwḄ⚪|}]ᵨḄ⚪ᢈᗐ5ὶ{]Êá.â᝞U☢ᚖ/ᑭᵨx¤ᩩU?UஹU?☢ஹ☢?☢æḄᓄa¸ç☢/UᡠᡂḄ«UUiéᵨiêḄ|}ë$ìaᜐᳮ«^⚪³᪷*«ḄᭆïRᙢÑᡠ¸Ḅ«aᜐᳮðᑮi☢Ḅñò◤⌕UUᚖ/ஹ☢☢ᚖ/óôõᑮU☢ᚖ/ᡈᵨkö}ë$ì.Õæ⌕÷ÕVÜÝöøÁæᩩᳮᓄஹÖ×ᓄ.⚪³ù“ûឋû}”ýᓄᱯÿᢈ.5.ᙠὃ⚪•ḄᐗὃḄ!"#$ᨵ&'ᓄ,ᙠ*+Ḅ',!-᪗/#0*+1ᵨᭆ4!ឋ6789:ᔠ<ᨵᡠ>?.@ABCDEFGὃ⚪9H',*!-᪗/#0*+ḄIJKᳮMNOPᓄ'#*ḄQR.ST⚪ḄUVUV⚪Ḅ.6.WXHYZ[\ஹᦻ_[\ஹ*+[\`abḄcdeWXfᑏஹ⊤iḄjឋ.7.STᙠl▭ḄOᵨ.᜛⚪MNopqஹ⌱s⚪1.ᙠMt☢ᑁwz=l+'xiᡠHOḄyᔣ{t|2}ᓫ#ᑣᡠyHOḄMᦪḄ().A.Ji/6B.Ji/3C.2n/3D.5n/62.Mᦪz=[(4-3i)2(q1+ஹxi),0]/(1-i),2,ᑣ|z|7().A.80B.400C.25/2D.25/43.ᙠMt☢ᑁwᦪ3—'xiHOḄᔣᢥ9┐"ᔣ(ᐔ/3),ᡠᔣHOḄMᦪ().A.ஹ3iB.q2ஹi

33C.2D.3+4.z@MᦪḄ@3n/4¢,£ᨵz¢2—2¢/z@lᦪᑣz7¢.A.1-iB.-1+iC.-1-iD.1+i5.«2=*+®¯y#0¢,£|z|=1,ᑣz—1/2¢¢2¢.A.´µḄlᦪB.µC.ᜧµḄlᦪD.·¸ᦪ6.ºMᦪz»¼argz+2i¢=ᑍ/4,ᑣ¢.A.|z|Ḅᨬ´@0B.Iz|Ḅᨬ´@ஹÃC.Iz|Ḅᨬ´@2D.Iz|Ḅᨬ´@2ஹÃ7.Mᦪz=cosx+isinx,ÉÊËᦪy=fx¢=|z3+1/z¢|Ḅ*ÍḄqÎᑖ¢.yy.--o|1xIIC.D.*6-48.aஹ3lÑᦪ"

34D.7n/410.MᦪzÛ2sin9+icos஺((n/4)<0<(n/2))ᙠMt☢ÝHOᔣÞßMᢥ9┐"ᔣ(3/4)nᑮᔣ஺àHOḄMᦪ@z=r(cos6+isin6),ᑣtg4>72().A.(2tg6+l)/(2tgO-l)B.(2tg9-l)/(2tg9+l)C.1/(2tg0+l)I).1/(2tg9-l)ILa=-2+i(i@¸ᦪᓫ#)z=l+C௃M+Cã"+Cã'+…+Cæo'+Ceeç1°argz=஺ᑣsin07().A.-1B.0C.1D.c(-10,ᑣzᙠMt☢ᑁHOḄᔣ#().(A.éqÍ▲B.éëÍ▲C.éìÍ▲D.éíÍ▲ëஹîï⚪13.ᙠMt☢Ýw"

35(3)5|I,'K83argwḄCE.19.RSTᑮIVWXYᑁ[᝞]^ᙠᓅaXX,cdXX,ᨵIf₠hhḄᓅiᨵIᜧᱏ₝ᙢ,₝ᙢmᨵ•op᪛ஹ•or᪛s•tᩈv.wᩈvxᑮp᪛yz{x|}~ᑮ|p᪛ᔣ•txḄᦪᙠᡭt᫕ᯠᑮᩈvr᪛x8z{ᡠxḄᦪᑮ|r᪛ᔣtxḄᦪᙠᡭt᫕ᙠt᫕Ḅ%᢬᣾TX.Sᑖᩭᑮhm¡ᑮ|ᱏ₝ᙢ¡ᑮ|p᪛sr᪛¢ᩈv£¤|.¥¦ᵨI¨©ª«SW¡X.20.01®¯ᦪ°ஹzz67|z/=a,|zz|³b,|z"?|³c(a,b,cᙳᜧ¹¯).º^»ᔲ᪷¾m¿ᩩ3À(Z2/ZI)?¥ÃÄᳮᵫ.Ç⚪©ÈÉÊÇ⚪ḄËᑖᦪḄឋÍÎᦪḄKᵨᜧÏᑖ.ᐸ⌕ᑁ[ᦪḄᭆÑsÒÓᱯÕÖ×ᦪஹ,ஹØÙ¹IÚᭆÑஹឋÍ}ÛᔠឋÝ©ᮣßKᵨàá.ᦪḄᭆÑsÒÓÊÇ⚪ËḄâÕãὃ(⚪ḄåÕ.Ë8KæçÝᓄéᦪÎᦪḄὶëÎìíæâîïðéñᓄஹᦪ@Éᔠஹ᦮Úᜐᳮ,¨ᦪôõö.1.ᐵ¹ᦪḄᭆÑ(1)øùItᦪéᦪஹðᦪஹúðᦪḄᐙ⌕ᩩtᦪûᐳýᦪḄᐙ⌕ᩩtᦪḄᐙ⌕ᩩ.þ»KᵨÿᩩᑨᦪḄᦪᱯᓫḄ.(2)ᳮᦪᦪḄ⌕ᦪ᝞!"ᐰ$ᦪ%&"'()ᜧ+%,-"./Ḅឋ1ᙠ3ᦪ5ᑁ"〉ᵨ.(3):;ᦪḄ<ஹ>?@>?AB%CD>?@E?ABḄᐵG.(4)'IJᙢLMᦪḄᦪN/O?N/ḄPᓄ%ᱯ$'IJᙢR•ᦪḄᦪN/ᓄTO?N/%ᐸVᒹX>?TᱯY?ஹZᱯY?Ḅᦪ[ஹ3\]ᨵᦻ`Ḅᦪ.:ᵨO?aᣚḄcdR•ᦪḄᦪN/ᓄTO?N/.2.ᐵfᦪḄghij(1)LMᦪḄlh⊤nN/(oஹᔣq).(2)ᳮᦪrsḄghij%:;t☢ᑁaqᡠ⊤nḄwNxI៉t☢z{Ḅaq%|ᑭᵨᦪN~ᔠ⚪.(3)Ig⌕~|i᢬᣾ᑭᵨ.জzIz2#0,IzI+z2I=Iz!—z2Iz1/z2=Xi(WR,ᐭW0)E(ᓽ?{.ḄtN$N%¡¢£ᡂ¥)xঝoḄ§¨©/ஹ{dḄVo©/ஹO?NḄª©/xঞ¬oḄ®{ஹ¯{%{dḄᚖ¯tᑖ{Ḅ%ᙊஹ³ᙊḄᦪ/.3.ᐵfᦪḄrs(1)LMᦪO´⊤nN/Ḅᔜ´rs¶ᑣ%|'IJᙢ¸¹sx:ᵨº⚗/ᳮ¼½¾ᳮᑖ¹sᦪ/Ḅ¿@O?/Ḅ¿.(2)IJrᵨÀᑡgrsឋ1জ3ᦪᓫÂiḄᕜÄឋx

36ঝ(1Åi)'=±2i,(1+i)/(1-i)=i,(1-i)/(1+i)=-ixঞᓫÂ3᪷Ḅឋ1.4.ᐵfᦪḄឋ1LMᦪ<Ḅᨵᐵឋ1ᐳᵐᦪḄrsឋ1%ᮣÊஹាÌrᵨᦪḄឋ1⚪$ÍÎ⚪ÏÐஹÑÒ⚪'ÓஹÔᓄLM@ᑭᵨᦪÕÖ׶Ḅᨵᦔ⌶Ú.5.ᐵfᦪ(1):]ᨵz,|zIḄ.-ÛÜ⚪Ḅݶ$Þz=x+yi(x,ydR)ᐭ,ᯠàᑭᵨᦪ.ḄjáᓄTᦪâ;.ᐸᱯY¶$ᑭᵨã<¶áᓄTᐵf<Ḅ;ä<ḄBà%ᑭᵨIzI=IW|ᐭ;.(2)LMx"=b(beC);᪷©/Ḅåæçᵨ%ᳮ᪷Ḅᱯolhij%:èt@¥.(3)fᐗºêজ;᪷©/@ëìᳮí〉ᵨxঝGᦪ•ᐗºê3᪷ᡂîï.6.ᐵfᦪ¶@ᦪḄðᵨ(1)ᦪA⌕ᵨfñO?@᪆ghÜ⚪.(2)fghwNVîïᨵᱯY?@ᱯY.Ü⚪%óὃ⇋ᵨᦪ¶;.(3)Ì;ö÷Ü⚪Vᐹᨵùáᱯoú%óὃ⇋ðᵨᦪ¶;.(4)iûüÕýðᵨᦪ¶ñÜ⚪Ḅiþ@ÿឋᵨᦪ⚪Ḅ.§6ὃ⚪Ḅᢈ()ᦪὃᦪḄ!"#ᳮ%&'ὃ(ᢈḄ.)+ὃ,-ᐭ/0ὃ1234Ḅᦪ'ᦪ567ᡂ+9ᦪ᝞;<ᡠ>?Ḅ@ᓄBᑨᔁEᑖGHIJKL⚪ḄᢈM.Nᦻ✌ᐜRSTUV3ᩩXNḄYZᯠ3R\TUV5ᩩᑖ]EᑖḄᢈ.ஹXNYZ1_ᢝᑁb᜜dḄeᡊ#᝱(1)ὃ,ᙠὃijᕜ▮mndஹ-ᐭ☟pq᝱(☟,᠗)s-t,ᱥvḄw᦮yzp{|}᣸EὃḄ{|ᐰ•.(2)ὃi⌕ᢥ⚜ᐜᑡḄᓫᵨᐹᱯὃ2B.(3)ὃ(⌕nEE¡#᝱¢'ᗐL¤ᡃᨩ§.¨⌕©ᑮ+⚪«¬ᡈ¯ᨵ{|ᨵḄ±«²³ᢵVᨵḄµ¢¶·L¸9¹º(»ᜧ½¾¿À½ÁᜫÃ)¶⌕6ᑁb᜜dḄ᝱ÄÅᢝὃƱÅᢝÆ•⚪ÅᢝᵨÆÇK¡⌶ÉÊ.Ë᝞1999ὃ⚪ÌÍÎÏÐÑÒ+ÓḄÔÕÖ×ᩭsÙÚÛJ.“ᡃ᧕Ó᧕ÞᜧßᡃÍÓÍÞ½Á”.2áᵨ〉ὃḄ⚪ãᶍ(1)>?ὃ⚪ḄÎÏåæᵫLὃᨵ{|Ḅ▲éêÖᑮ⚪«⌕ëìK“R;ᜐ×î”ஹ“ᔣ;i-”Hð+XNñ⚪.H¢{zòsó{|Ḅôõ▲ᑴḄ.ᡃ÷Ḅø•ᩩYZ“ùú”ᐹûüI<ýḄὃ⚪@ᓄBþNUÿḄ⚪ᡈᓄᔊḄὃ⚪ᓄᡂ5080%Ḅ⚪Ḅᐭ"ᔣḼ%&'(⚪)*Ḅ)ᔣ+,../ᩩ12“45ᑖ᪆”9:

37ᩩ<=>?Ḅ᪗4ᐭ"ᔣḼAB᪗4Ḅ)ᔣ+,..Cᩩ12“DE”ᐜGᶍDEIJ⚪)ᔣᯠL)*DE:M⚪)*ᨬLᢈPDE,QᐹSᡂTUVWXᏸ℉[\᪵^ὃᦪ`⚪abcd.2eᵨ⚪GᶍgᑖhiᑖᵫgὃḄ⚪kᜧmQ“ᑖhnᑖ”opqᦪὃrstuvᳮᣚyz{|u}Ḅ“ᐰ|ᐰ”⌕ᑮ“gᡂᑖ⚪ᡈ⚪Ḅᑖ”ᩭ᩽“ᑖhiᑖ”ᓽᔠᳮᵨ⚪GᶍeᡠḄᓄiᑖ.᝞ᑖᑖḄ⚪Gᶍஹᳮᡈ⌶Ḅ⚪Gᶍஹ⌨,Ḅ⚪Gᶍ¡rM'(Ḅ^⚪Gᶍei,ᐰ⚪⌨¢ᑖhiᑖTUV./ᑖd.3ᵨ〉(⌱¥Ḅὃ¦ᢈ§1✌ᐜ⌕᪷ªᦪ`Ḅ`«ᱯᑴ®M•«`Ḅ^⚪°±.᝞জ³+,ᐭ´⁐¶ᑮ¦ᔁ+¸q¹{º(»¼½¾¿ÀᓫḄᦪ`Âûᜧᾯ,ᐭᓫbḄᦪ`ÅÆ.ঝÈÉ᥎Ë“⚪Å”.¶ᑮ¦ᔁLᓽÌÍᐰᔁÎ"^bÏÐiM^ᫀḄ⚪T.bÒÓd.ঞ᡻Q“CÒÓ”..bÒÓÌÍᐰᔁTᵨÖᑮ10ᑖ×{Øᨵi/Cᓝᑖd./ÒÓᐰ☢^Tᵨ100ᑖ×d.CÒÓÜÝᦈßᑖhiᑖ.2ᐸE⌕ὃ“áâᑖã”Ḅ▭Må᪛“,ᐭãç”Ḅᐰèé.᝞জ^⚪“êᐜêL”.ᐜ᧕LìஹᐜíLrஹᐜîT`«dL5ஹᐜTᑖdLï.ð᝞1999Ḅᳮ«^⚪ᢥT19ஹT21ஹT20ஹT24ஹT22ஹ23Ḅαᩭ|.ঝ|⚪“b᠒bó”.ô⚪⌕᠒ஹ^⚪⌕óT■ö◚øᜫᑖᡈúᙠüᑖd.ঞý⚪þÿ.᧕⚪᫏⚪ᔁḄ⌕᪀ᡂὃᑖḄ:⌕ᩭ᪥Ḅ⌕!"⚪Ḅ#Ạ.⌕%&#Ạᑖஹ()*+ᑖஹ,-./ᑖ.ট12•4ᡂ56789:⁚.ὃ<⍝⚪>?@89,ABḄCDE,ᐕGH⌕I!⚪Ḅ4ᡂ5᳛ᵨLMḄNᐝPQᨬSTUVWPQX.ঠZ[DE\᣸.⌱_⚪ஹ`a⚪<⍝bBᵨdᑖe,fgᐜijkᡈᨬSmnopDEᓰ40%,ᶇ60%ḄDEs!t⚪.s!t⚪Uuvw⌕xᑏgxz{|}┯ḄCᙠ-ᑖHgxᓰᵨS☢ᑖ⚪ḄὃDEC◚ᜫᑖHᨵḄ᫏!t⚪,ᑏ.ஹᑖᑖḄ!⚪ᶍ⍝ὃ⚪s,zᩭ,>ᨵ,ᡠḄᱏa.ᡂ5,¡¢ᜫ£¤⚪᝞¦§ᱏ¨©ªᓄXᑖ.ᡃḄ®¯ᑖᑖ.1ᑖᑖḄ#°±1ᑖᑖḄ²ὃ“ᑖ´ᑖ”ᙠὃᨵ¶ᳮ!¸ᨵ¶ᳮ!¹ᨵ¶ᳮ!xᨵ¶ᳮ!ºX»¼½¾¿À▅ᔁDC!t⚪Hpᢥ᯿ᡠὃ9Ḅᑖ´ᑖÄÅgÆᑖxÄxÆ.Çὃt⚪gUÈTÉᯠ“ᑖᑖ”.ᵫDsmÌᦟÎp⌕ÏГᐰsᐰÒ”,Óf“ᑖ´ᑖ”Ô,b⌕Ï“40%ḄÐᙠÕ²ḄDEᑁt×ᐰᔁ”ᡠVÐᙠὃ,ØÙ“ᑖᑖ”½gÚDsmÌÛὃÜ+ÝXÞ.ßÇὃÉàáὃឋãÛ´ᑖäÅkᳮ!ªåæçèᳮᣚê.2ᑖᑖḄ#°ᑁd■ì“ᑖᡷᑖ”+“ᑖÆᑖ”ᑖ´ᑖ°îïᒹḼ“ᑖÆᑖ”TᒹḼ“ᑖᡷᑖ”.1H✌ᐜsḄ⚪ó⌕*+º-ᑖ.¿À⊤vÒὃsḄ⚪ó▅ᔁᦟÎÔõö÷ᐸḄùúᑖᡷûᑖ½D⌕ᱯ¼!ýþ“ÿᐰ”.112ᑖᦪz=3cos9+i-2sin6.ᦪy=8—argz0<9<TT/2ḄᨬᜧḄ9.

38(1999ᳮ(20)⚪)"#$%&•⍝ᨵ*+ᩩ-Ḅ᩽⚪✌ᐜ•123&ᦪ45argz:&•1;<ᐸᐹ?@A4BCDᐸEF123&᝞HI*+ᩩ-Jᓄᑮᦪ⊤N45.%O123PQRᡃTUVὃargzX8Ḅὶ[.✌ᐜF1ὶ[&argz&ᦪzḄ\]^_ᵫ0

39cosZCBF=((1/2)BC/BF)=((1/2)/4/4).ᡠæᫀjarccos("//4).$¸ᩭé(ஹê/4)ÝÂᑖf▭Ḅᓾ&íᑖ&»ᔩ?&ḄkðæᫀP-¥ᩭ&ñᳮឋ┯óQR“”.3(6ᑖ)ôajஹôbj&÷ø´äḄO1äøᦪᑡcú±+û³ᦪᑡôcj&äøᦪᑡ(2000ᳮ(20)⚪2¢)³$aFa௃q1þbnbgþqiWq2.ÿᵫ+a=CnCos20,_n2জbᔲasin0.ᨵq(and/HA)=(CnHCOS'0/CnCOS20)=(CnH/c),ঝnq2=(b/bn-i)=(csin20/c„-isin20)=(c/c„-i).ঞnnnᦑ)•ᑗn>l,ᙳᨵ(Cn-l/Cn)=q1Wq2=(c/Cn-l).টn2⊤4ᦪᑡ7cj9:;<ᦪᑡ.=4>2?@ABCDE4টF-ᐸHI:)ᜮḄ(LMN☢ḄPQEA)-RSTUḄᣚᐗFজ:┯YḄ-Z[e:nḄ\ᦪ-9:]ᦪ-^_ঝஹঞFa9bcDdeḄfg\ᦪ.•hcDfg\ᦪ-ᑣᵫঝj:;<ᦪᑡ-ᵫঞkjlm02:;<ᦪᑡ.2:ᵫn“pqឋ┯Y”_tuḄ“v_9)”(wxyz{z10|)<).PQEA>Ꮇa[;<ᦪᑡ-ᑣᨵ(Cn1]/Cn)=(C/C1),nnᓽ(+l+bnT/a+bn)=(a+bn/an-t+bn-1).nᑖ-qIᑮᑖ-(b(q-qi)/a+b)=(b-i(q-qi)/ai+bQ,n2nnn2cDqz-qi(WO)-(bn/an+bn)=(*/*+*),ᑖTᑮᑖ-(b/a)=(bn-i/a„-i)»nnᓽq2=(b/bi)=(a/anqi.nnn{jᩩ,ᦑa9:;<ᦪᑡ(k)-n=2ᩭ).ᙠz7aᨵ“)_9ᐰ”Ḅ⊤.2)ᐸ:-ᑖᳮ@Ḅ⚪£⌕C¥¦ᑖ.)n¦ᦪὃᩭ=-¨[©⌕Ḅ:᝞«^¬9NᩭḄ⚪£a¦ᑖ®ᑖ-ᐸ¯°:¦±²?ᑖ³.ᵫnL´ὃḄµ:ᔠ·Ḅ´a¸¹.ᡠ-^»ᑣ¼½•?ὃ¾½•⍝⚪µ9vÀᑖ-R▅ᔁÃᓾ:½S⍝@Å⚪µᨵÀᑖ-ᐸ»ZÆÇÈᩩ>ᐸ•:ÉᨵÊ˾-Ì☢Ḅ⚪ᓰᵨÊ˦.<᝞1999ÏᳮÐÑ(23)ஹÑ(24)⚪ᨵᜧᢇÔÕᔁ,2000ÏᳮÐÑ(22)⚪k:ᜧᢇὃÉᨵÊ˾ᐸ:9vÖ×ØᡠÙÚḄjÛ⊤ܱᩭᡈ⊤Ü┯Þ.

40)n“9v⊤Ü”-Nᦻxàáᑖ®ᑖḄSᢈãä)n⊤Ü┯Þ-ᑣ⌕^jÛZåஹpqZåஹæᶍZåஹèᳮZåDᑖ᪆»Zêëᔠìᳮ.(3)ᑖ®ᑖḄᢈãíẠ:@⚪æᶍᑖ®ᑖḄᢈã:@⚪æᶍᙠὃïaḄeᵨ.Nᦻxvᐹñòó-ᨵôõ᪵Ḅ@⚪æᶍ-÷ᨵôõ᪵Ḅᑖæᶍ>ø☄@⚪HὃḄú¯ஹ⊤@⚪æᶍḄú¯Hὃ-÷:ᑖ®ᑖḄᐰûü.(4)ᑖ®ᑖḄýñþb:>ᐰ@ÿ⌨ᑖᑖ⍝ᩭḄ⚪ᡃᑖᑖᩭᑖᑖᑖᑖḄ⚪ᶍḄᵨ"#ᶍḄᵨ$%ᩭ&ᐰ⚪(Ḅ)*.ᯠ-ᦪ/⚪ᐹᨵ23ឋ567ឋḄᱯ9ὃ6;<=ᑮ?@Ḅ▲ᑴᡠDᐰ⚪(Ḅ)*EᯠFᙠ•IJᙠ2K?ᑁM(ᨵḄὃO•PὃQR$Sᩭ&TUV“JX”)[\?᎛TUᑖ(.^_ᑖᑖᐹᨵ`abUcᐰ⚪(⌨ᑖᑖ.2ᑖᑖḄd⌕ᢈg(1)ᑖᑖhihjᦪ/⚪;⍗ᑮm[noḄp⚪ᙠᖧr?•mstḄᶍuvᑖwxᑡḄhzᡈὅmm}p⚪ᐜ(p⚪Ḅᑖ.᧜Pᩭ$ᙠὃj⚪;UVh$ᑏh•U(ᑮ$⊤ᑮ.ᱯ⚪sḄ⚪ᓄḄRchᑖḄVDᑮhḄᑖᨬ¢£¤E<¥Pᩭᑖᦪ¦U&§.¨Ḅ©ª«⚪¬pTᡂᐸ;Ḅ•°p$ihj.1999¨Ḅ±ᵨ⚪oᙠ²(2)p²(1)p±UᡂḄ6ᑖ.1987¨ᳮ´²(5)⚪(µ¶8,ᓰ12ᑖ)¸¨ḄὃO[§U᦮jḄº»¼Ạ¾¿ÀᑡÁa/(a+1)>0,1og(4(a+1)/a)>0,2(21og2(2a/(a+1))"—41og(4(a+1)/a)•1og((a+1){z2/a<0.5ᑖ.ÂÃ᦮mÄÁÅ&ÆᯠD)ÇmÄÁ.1994¨ᳮ´²(22)⚪(µ¶4,ᓰ12ᑖ)ᐸÈឋhzᙠÉKmÊËÌÍÎX)☢ḄឤÄÑÒÓo(ÔÕḄVᙠ1989¨ᳮ´²(19)⚪;µ).(1/2)(tgx,+tgx)=•••2=(sin(xi+x)/cos(Xi+x)+cos(xτ—x)).z22D6ᑖ.1994¨ᳮ´²(25)⚪(14ᑖ)1995¨ᳮ´²(25)⚪(12ᑖ)1996¨ᳮ´²(25)⚪(12ᑖ)1998¨ᳮ´²(25)⚪(12ᑖ)Äᡂ²1@DXᑮḄÖᑖ×ᩔw.§4Ù᪵jὃÛÜឋ*ឋp⚪-ஹᑁßᭆ⌕ᦪ/p⚪ᵫᩩãஹ£äஹ⚪Æåஹ⚪RÄ⌕æ᪀ᡂ.ᩩãḄᜓஹ£äḄéஹ⚪RḄ\᪵ឋᦪ/ÛÜ⚪Ḅ¼ᱯ9.ᡠê*ឋp⚪$ëᦪ/ᑁᔜᑖíḄ¾¿RḄîïðñஹ

41×ᯠòóஹᔠᳮaÅÄõöOḄᐹᨵIᦪ/÷*Ḅø⚨p⚪ᡈëúឋûüᩭýþḄᐹᨵ▭Ḅ⚪.ᵫ⚪Ḅ⚪ᝅᦪ⚪ᑖ᪆⚪Ḅ⌕"#$%#ὃ'(ᵨ⚪ᩭὃ+,Ḅᦪ-../01ឋ⚪34#ὃ'5Ḅᜧ789:;<ឋ⚪8=ᶍᙢᑖ@ABC(1)ᩩH01B⚪Ḅ᜜ᙠKLM┐PQRᩩHSTᡈVᐰᡈᩩHᨵY◤[┯]Ḅ^_`ᶍM᡻b<$cdQRᡂfḄᐙᑖᩩH.ᑨiᩩHᨵYj(klmnop.(2)QR01B⚪Ḅ^_ᱯsMᨵᩩHtQRᡈQRuvwᔲ(◤yz{|pv}.]B⚪Ḅz~MẆᱯlஹ9ஹᯠmnR|.ᙠᑨi(n⚪Ꮇᙠ@5yᳮ5ᑣᔲ}ᙠ᝞V5ᑣ}ᙠ.QR01⚪((⌕VḄKmnᑖBR.(3);ᢣḄM◤ᵨ(Ḅ⚪ᡈᢣ}⌕ᵨnḄ]P⚪¡¢#Ḅ᪀⌼ᓽ:%l.ᙠ;Ḅ¦§'((◤⌕Ẇ¨ᓄKLª«ᢝ_.ḄᱯK®ᵨB¯ஹ°ஹὶᩭ;⚪¦§'²³Ḅᡂᑖ#.´ஹ^_µl1¶☢¸ᔜº»M1ᡈ2,½¾¶☢¸VMu¶☢¸"¾¶☢¸Ḅ¸¿.(À◤ᑏ5zP8ḄÂ)µC᪷ÄAÅKÆÇᜧÈAÆ•⌕"8᪀⌼5᝞Ê9-26Ḅ¶☢¸ᐸ¸¿@(ஹÏi"/6).AopCMzP⚪QR7Vv}Ḅ01⚪.᝞Ó᪀⌼ÊKᐵÕM᪷ÄAÅKTÖv}×P☢ḄAᩩº.᣸◀Ú1,1,2)8ÛÚ1,1,1Ü,Ú1,2,2Ü,2,2,2Ü,ᯠᵫAB☢(AÅK)ᙠÝÞ᪀ᡂßàᩩHḄzP¶☢¸._⚪⌕"ᑏ5ᡠᨵ8ḄÂ(â#01¢)ᑣãὃ⇋☢ABCḄAᩩºᑖèéêAKëᐸzzRᨬ8Û(ஹí/6),(ஹî/12),(ஹI/12)APQb.l2ᦪᑡÚanÜßà(n—1)ai=(n+1)(a—1),a=6,ᑣanᔲö@÷Pøùn+n2ᦪᑡḄún⚗Ḅ?ý"5PøùᦪᑡVopᳮᵫ.µCᵫ(n—1)ai=(n+1)(a—1)᧕Ûn+nai=1,a3=3X5,a>=4X7,…,a=n(2n—1).nᵫᦪḄ.a=n(2n—1)(n£N).n#ᦪᑡ%bn'Ḅ(n⚗*+an,ᑣbn=an-a…=n(2n—1)—(n-1)[2(n—1)—1]=4n—3(n22).

42b„=4n-3,2n=l4ᡂ678ᯠ%b.'+:;ᦪᑡ.?+@A:;ᦪᑡḄ(n⚗Ḅ*7BA:;ᦪᑡḄC⚗b.=4n—3.DEFG⚪ḄIJ+FKL(n—1)a„+,=(n+1)(a„-1),Na-a?ஹaa.,,Qa.,RSEḄឋ.B᪵ḄVW▰1Y1,Zᐹᨵ]ὃឋ7_`ᓄ+b⚪c7ᐸZeᐹᨵfgḄ◚iឋஹjkឋ*lᔠឋ.ᙠᑖ᪆q7rᢕtf▤⌴wᐵyBAz⌕ᩩ}7~ᐹᑮfḄNḄb].G⚪>:;ᦪᑡḄ(n⚗*Ḅᐙ⌕ᩩ}Ḽ7#a.=an2+bn(ᐸaஹb+gᦪ)7ᐭKL:7(n—1)[a(n+1)2+b(n+1)]=(n+1)(an2+bn).n=l,a+b—1=0,জ,:a2=4a+2b=6,ঝᵫজঝa=2,b=-l,QI:7᧕Lឤᡂ6./.a„=2n2-n.ᶍ.3ᙠ¡¢┵P—ABCD7©¢PA_L¬☢ABCD,¬☢ABCD®¯.°¬☢Ḅ±BC²ᔲ´ᙠµE,(1)·NPED=90°º(2)·NPED+┦¼.E½Ḅ¾¿.À9-27ÁZF(1)ÂABW(1/2)ADq7±BC²´ᙠµE·NPED=90-ºÂAB>(1/2)ADq7µE´ᙠ7E᝞.AD+ÅÆ?ᙊ0,ÂABW(1/2)ADq7஺஺ÉBCᨵÊᐳµ7#+E,ÌAE,ᑣNAED=90°,ᓽDEJ.AE.PA_L¬☢ABCD,AEPEᙠ¬☢ABCDᑁḄÐÑ7DE±PE,ᓽNPED=90°.ÂAB>(1/2)ADq700ÉBCÓÊᐳµ72BC±²ÔfµE,ZAED<90°.×PEJLDE,ᑣØᨵDEJ_AE,ᓽNAED=90°.BC±²´ᙠ·NPED=90°Ḅµ.(2)±BC²Ù´ᙠµE,·NPED+┦¼7BµᓽᐸfAµ.E᝞.̾BD,?AFJ.BD,ᚖÜ+F,ÌPF.ºPA_L¬☢ABCD,/.PF±BD.ÝAABDRtà,Fµᙠ±BD²7NPBF┦¼.DEF(1)Ꮇ#±BC²´ᙠµE,·NPED=90°,ᓽᨵNAED=90°,ᵫGâ(1)Ḅ¾¿.“Ꮇ#´ᙠ”·ᑖ᪆ᨵä“ᵫᜮ”7QfgᑏᙠZç.(2)“èE”4féê.Bfë⚪ḄRf쾿FÂAB<(l/2)ADq7#AD+ÅÆḄᙊíBCîMஹNðµ(᣸ᑡòóBஹMஹNஹC)7ᑣôõBMஹNC²◀µMஹN᜜ḄÔ•µE,ù·NPED+┦¼ºÂAB=(1/2)ADq7±BC²◀BCḄµ᜜ḄµEù·NPED+┦¼ºÂAB>(1/2)ADq7±BC²ḄÔfµE·NPED+┦¼.4#úûô(x2/a2)-(y2/b2)=1Ḅþÿ1,ஹᯖᑖF,ஹF*ᔲᙠP,IPF,IPᑮ1Ḅ!d#IPF2IḄ%&'⚗)

43*+Ꮇ-ᙠP|PF/2=d|PFzl.✌ᐜὃ⇋IPF,|ஹ|PF"ஹd234#Ḅ564aஹb78Ḅᐵ:-Ḅ!;᳛e=(c/a),ᵫIPF,|d=e,>|PF"=de.ᵫ|PF|-|PF,|=2a,>IP2Fzl=2a+de.ᵫ|PF,|'=d|PF",>~A2=<1(2a+de),ᓽde2=2a+de.PᙠḄᐙ⌕ᩩFGHIJKLMNὃ⇋OdPQRḄ⚔ᑮT1Ḅ!Iᓽd>a—(a'/c).ᵫde?=2a+de,>d=2a/(e?-e)Ua—(a'/c).Ve=(c/a)WᐭI>e2-2e-lW0.Ye>l,ZlJ2+2J5a^Pᙠ_`6⚪bcdefghឋj⚪IkelmR⚪'nᦪ8Ḅᐵ:I+⚪kpJKᢥnᦪḄPrsNtuke.d>a-(a2/c)6⚪ḄᐵwIᦪNkᔠyz{|Ḅkp.ὶ~Iᢕ564yzᑖ᪆I᧜++᪆⚪ḄO{.5RᙢI#ᯠḄᧅIᑮ2000ᐰ☢¡Ḅ¢ᓄ᳛¤¥40%,L2001g¦I§Vu¨[᪵Ḅª☢ᓽ«ᨵ☢¡Ḅ20%V¢ᓄ.#®r^IᵫRᔜ°«±I«ᨵ¢ᓄ☢¡Ḅ5%ᓄ.²³´µᔲᐰ☢¡Ḅ80%¢ᓄ)(·ᐰ☢¡=¢ᓄ☢¡+☢¡)*+-ᐰ☢¡PI2000Ḅ¢ᓄ☢¡a,,n´¢ᓄ☢¡a”“ᑣai=0.4p,a“+¼a”+(p-a),20%-a,5%=(3/4)a.+(1/5)p.nn/.a,,-(4/5)p=(3/4)(a„-(4/5)p).n/.{a„-(4/5)p)½a,-(4/5)p✌⚗I(3/4)¾&Ḅ%&ᦪᑡ./.a„-(4/5)p=-(2/5)p•((3/4))'.,.a„=(4/5)p-(2/5)p•((3/4))...ÀÁÂḄn€N,Ãᨵa.V(4/5)p.ᓽÄeÅÆIÃPbµᐰ☢¡Ḅ80%¢ᓄ._`[O⍝ᵨOឋÉÊËÌḄᨵ¨ÍÂḄsÎ⚪IᐸÐÑ⚟ᐹghឋ.ᐸ+ÐḄᐵwV⚪'Ḅᦪ4ᐵ:ᵨᦪÔÕÖרuᩭ.ᙠ[ÙÚᵨa஺ஹa”,⊤ÝÞ´ßḄ¢ᓄ☢¡ILàVÍ▭⚪âᓄ⌴äᦪᑡ⚪.2ஹå⚪æç1¤èxGR\(x+i)'WR(iéᦪᓫ)IᑣPrḄxḄëᐳᨵ().A.13B23C33D432¤èí☢ací☢B=1,aUa,ᑣí☢Bᑁ().A.Oᙠ#aízḄB.Oᙠ#aᚖḄC.OPᙠ#aízḄD.OPᙠ#aᚖḄ3᝞M9-28,ABñᱥᯖFḄóôIPABḄ'IAஹBஹPᙠT1ḄýþᑖMஹNஹQ.ᑣ½õö3keজFM_LFNøঝAQ_LBQøঞFQ_LABø@AQ±FM,ᐸ'ûüḄᨵ().

44M9-28A13B23C33D434-a-✌⚗1Ḅû⚗ᦪᑡ,ÿ(n+1)aY-naJ+am•a“=0(n=l,2,3,•••),ᑣḄ⚗5ᦪf(x)="X+1-ax(a>0),aḄᦪf(x)ᙠ0,+°°)ᦪ.6f(x)=1og.x(a>0,a#l).2,f(aI),f(a?),…f(a„),2n+4(nGN)ᡂᦪᑡ(1)a”(IWmWn)(2)bn=a"f(a„),aḄ!b„ᓫ#⌴ᦪᑡ.7%&ABCDḄ'(⚔*AஹBஹCஹ1),-ᙠ.☢aᑁ1ᙠaᑁḄ2345A'ஹB'ஹC'ஹD',89:';&A'B'C'D,<%&Ḅ=(ᐙᑖ@⌕ᩩC.8ᦪᑡ!a„)ḄD2⚗8,E10⚗FG185,H!a“I45JD2⚗ஹD4⚗ஹD8⚗ஹ…ஹD2"⚗ஹ…ᢥ᯿NᩭḄᐜQRS᣸ᡂ=(ᦪᑡ!b..(1)b஺VḄEn⚗FGS„(2)T“=n(9+a.),8XYS.ZT”Ḅᜧ].9^_ᩭ`ᔆ⌕ᑴcde500m'Ḅfghij`klᨵno-pqrḄhi&stᑴkᩞᧇ(ᓫwm)জ19X19ঝ30X10ঞ25X12.{|⌱~ᐸI=oqrJḄᑴciᫀ(⌕ᵨᧇᨬḕ᧕).10C(0,1)ᙊ*2+222=22(2>1)Ḅ=(⚔*ᔲᙠᙊᑮ*C᜜Ḅ*AஹB,ABCC⚔*ḄῪn&.᝞ᑮᨬᨵ(᪵ḄῪn&᝞-ᑮ¢£ᳮᵫ.¦⚪¨©8=ஹ⌱~⚪1.ᐰ«I=R,«ᔠM={x|y=2"',xeR},N={x|y=1g(3—x)),ᑣMnN().A.[3.4-o0)B.(=8,1)C.[1,3)

45D.I2.᜻ᦪy=f(x)Ḅ:¶·(-8,o)U(0,+8),·(-8,4-00),¾1¿¾x>1Âf(x)>0.ᐵf(x)ᨵÄᑡÅ⚪জf(ߟ1)=0ঝiÇf(x)=0ᨵfÈ(Éঞf(x)Êᙠᨬ]Ëfᨬᜧ@f(x)ḄÍÎᐵN*ÏÐ1ᕜÒᦪ.ᐸIÓ9ḄÅ⚪().A.জঝB.ঝঞC.ঞটD.জট3.Ø5ᦪf(x)=ax2+bx+c(aWO),᝞Þf(x])=f(x)(x௃Wx2),ᑣf(xi+x)22().A.-(b/2a)B.-(b/a)C.cD.(4ac-b2)/(4a)4.f(x)=logaIx+11(a>0,aHl),¾x£(T,0)Âf(x)ឤᜧëìí().A.f(x)ᙠ(-1,+8)ᦪB.f(x)ᙠ(-8,-1)ᦪC.f(x)ᙠ(-8,-I)îᦪD.f(x)ᙠ(-oo,1)îᦪ5.ᦪf(x)={0(xfᳮᦪ)1(xᨵᳮᦪ)}ìíf(x)().A.᜻ᦪ1ᕜÒᦪB.Ꮤᦪ1ᕜÒᦪC.ó᜻óᏔᦪ1óᕜÒᦪD.Ꮤᦪ1óᕜÒᦪ6.f(x)=x-(1/x),ᑣÏõö-ëḄ÷ᦪx,ÄᑡøឤᡂùḄ().A.f(x)=f(-x)B.f(x)=f(1/x)C.f(x)=-f(1/x)D.f(x)•f(1/x)=17.ᦪf(x)=(x-1)/a(a>0,aWl),ᙠp=ᙶ᪗þIy=fl(x)Zy=a'"Ḅ().v

46c.D.2-148.┵Ḅ⚔P,Pᙠ☢Ḅ0,PO=a.#ᵨ%&'☢Ḅ%☢()*+┵,)☢-P0'M,/0)1Ḅ2+345Ḅ5678.9:;0M=S,ᑣS>aḄ?ᦪᐵB().S=Ca—aS=ஹa—a(V5/3)a⍝/2)a9.KᵬMNᑮPMNmᑖSḄᵯUVᵫ?ᦪf(m)=1.06X((3/4)[m]+1)^_,ᐸam>0,[m]⊤dᜧ'8'mḄᨬg᦮ᦪ.ᑣKᵬMNᑮPMN5.5ᑖSḄᵯUV().A.4.77ᐗB.5.25ᐗC.5.56ᐗD.5.83ᐗ10.f(x)᜻?ᦪ,qᕜs2Ḅᕜs?ᦪ.tx£(0,1)v,f(x)=lgl/(1+x),ᑣf(x)ᙠyz(1,2)().A.{?ᦪ,|f(x)>0B.}?ᦪ,|f(x)>0C.{?ᦪ,|f(x)<0D.}?ᦪ,|f(x)<011.᝞'Ḅᦪx,f(x)⊤dx+1ஹ2x6-x*ὅaḄgὅ,f(x)ḄᨬᜧA.(7/2)B.1C.4D.(9/2)12.9ᔠM{T,0,1},N={2,3,4,5,6},᧜f:M->N,01'xSM,ᨵx+f(x)+xf(x)᜻ᦪ.*᪵Ḅ᧜fḄ+ᦪ().A.122B.15C.27D.50ஹ⚪13.9?ᦪfI(x)=ax2+bx+c,f2(x)=ax2-|-b2x+c2,01f!(x)1112+f2(x)ᙠ(-8,4-co){?ᦪḄᩩ¤¥.14.9?ᦪf(x)Ḅ¦?ᦪh(x),?ᦪg(x)Ḅ¦?ᦪh(x+1).f(2)=5,f(5)=-2,f(-2)=8,g(2)ஹg(5)ஹg(8)ஹg(-2)a,¨©ª_ᐹ5ᦪḄ15.¬᪥⌕°ᜓ¨+²³,◤µ¶²9ᜓ·¸ᝅ.>ᔆ»¼ᖪ,¾ᢥ_ᔆÀÁÂ,·ÃÄ

4750ᝅÅÆÆÇᝅÈ_ᔆÀÉ30ᐗ^ÊËÌ.᝞ᢥ_ᔆÀµÍ¥Îaᐗ,ÏÐÍ11ᝅÑÆᢥËÌÀÁÂាÓÔÎaᐗ(ÀÕ᦮ᦪ),ᑣaᐗ.16.1+ÖᣚØᐜᐵ'Ú:ÛxÜÝÞᔣ%à(1/2)+ᓫâÝᨬãÞᐵ'Ú:äxÜ.^_å+?ᦪØy=(1/2)•3xl,y=(1/2)•3xl-(1/2),y=l+log2x,y=l-logi/)(2x+l),éê3(3ᑖë⊤dÖᣚìḄí᪆ïð(x),ñ¨ÖᣚãḄí᪆ïf2(x),ñÖᣚãḄí᪆ïf3(x),ñÖᣚãḄí᪆ïò(x).óôfi(x)=,f(x)=,õ(x);,2f4(X)=.ஹí÷⚪17.f(x)ᙠ(0,4-°°){?ᦪ,|f(1)=0,f(x)4-f(y)=f(xy).ªùØt0VxVy<1v,ᨵ|f(x)|>If(y)|.18.?ᦪf(x)¨ᑗᦪxஹyᙳᨵf(x+y)=f(y)+(x+2y+l)xᡂý,|f(1)=0.(1)ªf(0)ḄÝ(2)tf(x)+3V2x+a,|OVxV(1/2)ឤᡂýv,ªaḄÿ.19.ᔆᓄᙠ150ᔴ250ᔴᡂy(ᐗ)"x(ᔴ)ᐵ%&'(ᙢ⊤+,y=(1/10)X2-30X+4000.(1)4,56ᔴ7ᔴḄ9ᙳᡂᨬ<=(2)>7ᔴ9ᙳ?ᔆ@,16ᐗ4,56ᔴ&BCᨬᜧᑭF?ᨬᜧᑭH,56ᐗ=20.Ia,b,cGR,PQRb'MacVO,ᵫXYa(Igx)?+2b(Igx•Igy)+c(Igy)’=1ᡠ⊤+Ḅ_`ab(10,(1/10)).4cdefgᩩ_`iḄjklbP(x,y),1g(xy)Ḅnop-§6XYrbஹtu⌕b1.wᵨXYrby⚪&{|},~d(1)ᡠ☢Ḅ⚪ᓄ,XY⚪(2)ygXY()ᡈgXYḄᨵᐵឋC?Ḅ(3)XY()Ḅ,⚪Ḅ.2.ᙠwᵨXYrby⚪kḄ~⚪d(1)&{ᳮy,XY(ᡈᐵ%).foឤc&{ᳮy,XY4⚪&{ᡂyXY⚪(2)_`XYḄ¡¢£ᐸ¥¦ᐵ%Ḅi§oXY()Ḅ4yᡈXYḄ᪷ᙠ•©ᦪ«Ḅᐙ⌕ᩩḄ¡¢(3)®ᦪḄ¯5ឋ&{|,eXYḄẆ±.3.ᙠᔊḄ³ὃµlX☢ὃXYḄ4y¶lX☢oXY·,l¸ᦪ¹ᐹ»y¼ᔜ¹¾Ḅ⚪.&ᑖ,⌲Á³ḄÃÄÅd(1)yXY(2)ÆÇᦪXYḄ(3)ᓄ,eXYḄẆ±᝞_`Ḅ¥¦ᐵ%ஹ®ᦪḄឋஹÉᔠḄᐵ%(4)᪀⌼XY4y⚪.ÍஹÎ⚪Ïy

48Î1ÐÑÍÅ®ᦪf(x)=ax'+bx(aஹbo©ÒᦪPaW0)QRᩩdf(2)=0,PXYf(x)=*ᨵ᪷.(1)4f(x)Ḅy᪆(2)doᔲÖᙠmஹn(mÖᙠ4?mஹnḄ>ÜÖᙠÝÞᳮᵫ.Ïyd,4lÇḄß⌕àá⚪kᑡ?ãÇḄXY.(1)ᵫᩩÑXYax■'+(b—1)x=0ᨵ᪷äᯠ᪷,x,=x=0,fo20=xτ+x=(1—b/a),2ᓽb=l.•:f(2)=4a+2b=0,Ía=-(1/2).ᦑf(x)=—(1/2)x?+x.(2)f(x)=-(1/2)(x-1)2+(1/2)W(1/2),Í2nW(1/2),ᓽnW(1/4).èéᱥ`y=—(1/2)x2+xḄeëìox=1,íèînW(l/4)f(x)ᙠm,nio⌴ð®ᦪ.IQR⚪kḄmஹnÖᙠᑣᨵrf(m)=-(1/2)mz+m=2m,\f(n)=-(1/2)n2+n=2n.kᑮmVnW(1/4),&4?m=-2,n=0.ᦑÖᙠ©ᦪm=-2,n=0,×f(x)Ḅ¢ØÙ,-2,0,Ù,—4,0.Î2ÐÑóbA(T,4)ÚB(3,5),>éᱥ`y=x'+(a-1)x+a?"`ôAB(Üᒹöó÷b)ᨵPßᨵlᐳb4©ᦪaḄn.Ïyd⌕×éᱥ`"`ôABùᨵlᐳbß◤ó_`XYᡂḄXYᙠûÑᦪḄᐕ¯ᑁᨵPßᨵy.>ᵫXYþ»y,CᐵfxḄÍÅXYᑣ⚪ᓄ,•ᐗÍÅXYḄ«᪷(©᪷ᑖÿ)⚪.᧕ABḄy=(1/4)(x+17)(-l2(

49=ᡠ8aḄ?@BC(-(3+ஹ/5)/),-1)U(-(3-ஹ/5)/2),2)U(-(5/12)+(12/6)5229}.J2᪆LMḄNOὃ⇋,ᱥABḄ!ᐳP,ᑣPABḄᑁᑖJSᨵT=(AP/PB)>0,ᵫUVWXᐵ%aḄ#Z.23#Z[V8\aḄ?@B.]ὅ_•`.a3—cosa+cosB-cos(a+B)=(3/2),8┦NaஹpḄ@.d2efghiᡃkᙠ•lmno82pᨵqrᦪḄ⚪tᐹᜓqwXḄᩩyz⚪,{\|zUV},~⚪2ᑣᐸᯠ◚pḼ|ᐵ%aஹBḄᐵZ,C3◚pᩩyᙠMᜐ?ᡃk4}ᐜḄ#Z<᪷ZḄ᪀ᱯᩭ.ᵫcosa+cosP-cos(a+B)=(3/2),2cos(a+P)/2)cos(a-3/2)-(2cos2(a+B)/2)-1)=(3/2),ᓽ4cos2(a+P)/2)-4cos(a-P/2)cos(a+B)/2)+1=0.ঝ34᝞£¤ᔣ¦§ᙢo©ᨬ«V¬ᑮজZ¯©ᩭ¤°±⌕.3z¬⌼ᡂ´µ¶·⌕ḄC¸ᯠ|¹ºᡃk»¼½ᑮ¾{Ḅ|ᐵZV¿2¶Mnᵫ|ᐵZÀVᑮqwXḄᐵZ.zSᑮUᡃktÁ4ᦋNO©ὃ⇋ঝZḄᐸÃ᪀ᱯÄᔲJÆÇᑮÈḄÉÊ◚pËÌ.Í*¯ঝZᐹᜓÎᐵ%cos[(a+B)/2]Ḅ|ᐗ=ÐḄᱯÄC3|ᱯÄÑzÒ“”Ḅ~ÕᱫḼ×ØSÙSÚ.34ÛÜÝÞÎ2ß[Vàáâã.cosE(a+0)/2]*ᦪA=16cos2(a-஺)/2-1620,ᓽcos2(Q-8)/2N1.Scos2(a-B)/2W1,:.ᨵcos(a-P)/2=1.V-(ai/4)<(a-p)/2<(n/4),•(Q-B/2)=0,ᓽQ=B,ᐭজcosa=cosB=(1/2).ᦑa=B=(n/3).ᙠᩈ⚪◚pᩩycos?!e(a-஺)/2]=1èÝᑴêḼ2⚪ÛÜḄëì.3◚pᩩyḄ᢬᣾✌ᐜᨵ“rðᐜ”ḄὊ3À»CTkÑòḄ2⚪fg.ó⌕Ḅ»C⌕ᗐ%Jᔜö☢ஹøùúû᦮ü᪀¯©ᑖ2ýᒈ᪆ÿᨵḄᩩᨵᦔᙢ᢬᣾⚪ᨵḄ◚⚪ᑮᑴ.ஹ⚪1.ᦪf(x)=(ax+1)/(x-3)Ḅ"ᦪ#f(x)$%ᑣaḄ'(().A.-3B.-1C.3D.12.,-a(./2x+x=0Ḅ᪷b(./logx=2Ḅ᪷c(./log.1/2)x=xḄ᪷ᑣaஹbஹc122Ḅᜧ4ᐵ6#().A.aB(3,1),8Cᙠᙶ᪗<=.>NACB=(ii/2),ᑣ?᪵Ḅ8Cᨵ().

50A.1CB.2CC.3CD.4C4.,-xWR,yER',QᔠM={x?+x+l,-x,-x-l},N={-y,-(y/2),y+1}.>M=N,ᑣx'+y?Ḅ'#().A.4B.5C.10D.255._`a(ax)/(x-1)VIḄQ({xIxVIᡈx>2),ᑣaḄ'`g.6.,-tga=3x,tgP=3x,la-B=(n/6),ᑣnᦪxḄ'#.7.nᦪaஹbஹcrs5'=2I<=J5',labKO,ᑣ(c/a)+(c/b)Ḅ'`g___.8.┦yAஹBஹCrscos2A+cos2B+cos2C+2cosAcosBcosC=l|f}~A+B+C=ᑍ.9.,-8Mᑮ8A(1,0)ஹB(a,2)ᑮy<Ḅ`.>?᪵Ḅ8MាᨵC|aḄ'.10.,-ᦪf(x)=log3(2x2+bx+c/x2+l)Ḅ'([0,1]»|bஹcḄ'.§5ᦪஹ⌕81.ᵨᦪᩭὃ⚪Ḅ.#ᦪ.ᦪ#ᦪᭆஹឋ`-¡¢£Ḅ¤¥ᭆ¦#ᙠ-."§¨ᵨ©ª«Ḅ¬ᨵឋḄᢣ¯..2.ᦪḄ°ᵨ~(1)ᙠ|Ḅ±'³´ὃ⇋¶ᔲ¸¹⊤»(¼Ḅᦪ½¾¿ᓄ(|¹ᦪḄ'Á(2)᪀⌼ᦪ#ᦪḄÄ⌕ÅÆÁ(3)¨ᵨᦪ⌕ᢕÈÉᱥᙠ¨ËÌ/©ÍÎÏᢝ_ḄÑÒឋ½¾ÓÔᙢÕ⚪.Öஹ×⚪Ø×1Ùa>b>cla+b+c=0,ÚᱥÛy=ax2+2bx+cÜx<ÝḄÞß(1,|}~V1<21.Ø~᝞á¶âãäl=f(a,b,c)Ḅ⊤»aÍå⚪æçg|ᦪ1Ḅ'.*.*a>b>c,la+b+c=0,a>0,c<0.ᵫ⚪ë-ì=4b2—4ac>0,½¾./ax2+2bx4-c=0îᨵ7C_ïḄn᪷x1ஹx,2ᑣ12=(XI-X2)2=(x1+x2)2—4xix2=(4b2/a2)—(4c/a)=4((b2/a2)—(c/a))=4[((a+c)2/a2)—(c/a)]=4((c/a)+(1/2))2+3.?ñò12#(c/a)ḄÖ£ᦪᵫa>b>ca+b+c=0ó2V(c/a)<-(1/2).ᵫÖ£ᦪḄᓫõឋó-ö(c/a)V-(1/2)´12#ᓫõ⌴øḄg#4(-(1

51/2)+(1/2))2+3<12<4(-2+(1/2))?+3,ᓽ3<12<12.ú1>0,ᦑஹü<1<2ஹü.᪀⌼ᦪᑭᵨᦪ⚪◤⌕⚪ὅᓄᙠ⚪“”ᦪᩭ.᝞2001ᐰὃ(20)⚪i,m,n!"᦮ᦪ$l.2?@AB0WpW4ḄCᑗEᦪFGxZ+px>4x+p-3ឤᡂJK%xḄLMO.PᡃRSTUVx.WX>᪀⌼ᦪy=x?+(p-4)x+3-p,@!Y⚪Zᓄ[pe[0,4]\y>0ឤᡂJ%xḄO.]^_Y⚪◤⌕bᵨcdᦪefcdgḄhi᪷kᳮ,92^!mnᩖḄ.᝞pVPq.rX>xs[tᦪ᪀⌼ᦪf(p)=(x-1)p+(X2-4X+3).uᯠf(p)⊤xPḄCdᦪ.y[pe[0,4],ᡠeᦪf(p)Ḅ{|!Cᩩ~.⌕£(p)>0ឤᡂJ$f(0)>0$f(4)>0.f(0)=x2-4x+3>0,4,4x3.ᵫI-4)=x2-l>0,xḄLMO!(-8,-1)u(3,+°°).3(ᐵ@xḄglg(x7+20x)-1g(8x-6a-3)=0ᨵCḄE᪷%EᦪaḄLMO.P•kgF@X2+20X>0,x2+20x=8x-6a-3.x<-20ᡈx>0,জx2+12x+6a+3=0.ঝf(x)=x2+12x+6a+3.(1)(ᱥ~y=f(x)xmᑗᨵA=144-4(6a+3)=0,ᓽa=(11/2).a=(11/2)ᐭঝ4x=-6,ABজ..♦.a*(11/2).(2)(ᱥ~y=f(x)xm(᝞{2-12),ᑮᐸ?[x=-6,ᦑḄ¡ᙶ᪗ᨵ$ᨵC_ABজḄᐙ⌕ᩩ¥[{2-12f(-20)>0,4-(163/6)Wa<-(1/2).

52f(0)<0,••-(163/6)WaV-(1/2)\kgᨵC.²³(i)ᙠU☢Ḅ⚪ᡃRᑭᵨ?x=6¹(-20,0)º(0,0)Ḅ»¼½,¾¿Y⚪Zᓄ[FGÀf(-20)20,f(0)<0.(ii)Á⚪Ḅ•Ã8Ä!ᑭᵨᦪÅÆᔠḄ89.kgF@x2+20x=8x-6a-3(xV-20ᡈx>0).ঞY⚪Zᓄ[%EᦪaḄLMOË~Ì8x-6a-3ᱥ~yr'+ZOx(xV-20ᡈx>0)ᨵ$ᨵC_Òᐳ.Ôᯠ^Õ_ᦪḄ{|Ö׳ØÙᙠÚÛÜÝÞßRᨵ$ᨵ•_Òᐳᓾá³u.᝞pVgঞâ.XÅ᝞x2+12x+3=-6a(xV-20ᡈx>0).ãᙠäCËåᙶ᪗æᑖè.ᱥ~y=x2+12x+3(x<-20ᡈx>0)ºË~y=-6a,᝞{2-13ᡠx.$3V-6aW163,ᓽ-(163/6)WaV-(1/2)\Ë~ᱥ~ᨵC_Òᐳ.{2-13••-(163/6)WaV-(1/2)\kgᨵCḄE᪷.éஹë⚪1.(?@ABx£(0,(1/3))ḄCᑗEᦪx,FG3x2L$a*+1ogyy>0B.x=y>0C.y>x>0D.Øú3.ᦪrIgx(X2(3/2)),(gf(x)=kþEᦪᑣ().f(x)=I1g(3-x)(x<(3/2)).

53A.k<0B.klg(3/2)4.2OWx<2n,ᑣ5sin3x+3sinx>5cos3x+3cosxḄ().A.(0,(n/4))B.(0,(n/4)]C.((Jr/4),n)D.((n/4),(5n/4))5.ᙠ(T,1))*ᙠx஺,-3ax-2a+lV0ᡂ3,ᑣ4ᦪaḄ679:6,<=tg2x+V^+m=0,tg3y+D_m=0,ᐸG|x|<(n/6),|y|<(n/6),Iljlog2(2x+3y+8)7.MNᦪy=f(x)PQR4ᦪxᙳᨵf(2+x)=f(2-x).UVWf(x)=0ᨵ4X᪷,ᑣZ4X᪷[\].8.<=4ᦪpஹqablg(log3p)=lg(2-q)+lg(q+1),cpḄ679.9.<=ᐵfxḄVW21gx-lg(xT)=m.Um>l,cgVWᨵhXḄ4᪷.10.4ᦪxஹyab(x+J,+1)(y+J'"+1)WLcgx+yW0.§1kᔠmkᔠnoḄpᵨ:ஹrs⌕uᙠvwrsḄxẠ),z{rs|⌕}~᝞X⚪1.⌕=uḄ(1)kᔠGᐗḄXឋ(2)kᔠḄ(3)ᵨkᔠ⊤ᨵᐵᦪᭆ,ᵨkᔠᐹ⊤ᨵᐵᦪᐵv.2.kᔠᔠ⚪Ḅ(1)kᔠmḄᔠ(2)kᔠmḄᔠ(3)kᔠm᪆Ḅᔠ.3.kᔠnoḄpᵨ(1)ᵨkᔠVᑨ¢£⚪Ḅᐙ⌕ᐵv(2)ᵨkᔠ¥u}¦§rᩖḄ᣸ᑡ«ᔠ⚪(3)⊡knoḄᵨ.ஹ®⚪¯®1<=kᔠM={x|x=cos(nn)/3,nGZ},P={xlx=sin[(2m-3)n]/6,Z},ᑣMmPab().A.MUpB.M=PC,pD.MnP=O¯¸¹ᳮkᔠMஹPḄR»ᐭ½.U¾nஹm]¿À,ᑣMஹPᑖÂ⊤Nᦪx=cos(nn)/3^x=sin[(2m-3)n]/6Ḅ7Ã,

54⚪Äᓄ]ᑨ¢ZhXNᦪ7ÃḄᐵv.ᵫfZhXNᦪḄÇ»Ãᙳ]᦮ᦪkZ,ᡠÊËÌḄ7ÃÍ•Çf[T,1].᝞cZhXNᦪḄ7Ãᕖ?᝞ÑᑖÂ6᦮ᦪnஹmḄ:Ò7,ᵨᑡÓᑏÕkᔠMஹP,ᯠ×¥ØÙÕᑨ¢,ZÚᯠÛ¥,ÜᵫfÝᑏÕkᔠMஹPḄᡠᨵᐗ,¸ÝÞßàᑨ¢ᜫâ.ᡃÌ=⍝,NᦪᙠËḄ:XᕜæᑁḄNᦪ7ḄkᔠèéNᦪḄ7Ã,êëz⚪ì᝞í,Nᦪx=cos(nn)/3^x=sin[(2m-3)n]/6Ḅᨬïðᕜæᙳ]6,.••ᑖÂ6n,m=0,1,2,3,4,5,ñM={1,(1/2),-(1/2),-1),P={-1,-(1/2),(1/2),1)..M=P,⌱B.®2Mf(x)=x"+px+q,A={xIx=f(x)},B={x|f[f(x)]=x}.(1)cgA=B(2)᝞ÑA={-1,3},cB.¯z®õökᔠஹNᦪ\VWḄᔠ⚪.÷øùkḄᭆ,⌕gA=B,ú⌕gPQRx,GA,ᙳᨵx°GBᡂ3.ᵫA={-1,3}=,VWx=f(x)ᨵ4᪷:1\3,¹üpᵨýþÇᳮ¸cÕPஹqḄ7,ÿf(x)Ḅ᪆x=f[f(x)],BḄᡠᨵᐗ.(1)x0!"ᔠAḄ%&ᐗᓽᨵXoWA.A={x|x=f(x)},X0=f(X(1),ᓽᨵf[f(X0)]=f(X0)=xo,xB,ᦑA=B.(2)*/A={—1,3}={x|x?+px+q=x},•x?+(p-1)*+4=0ᨵ;᪷&1=3,>ᵨ@AᳮC—1+3=—(p—1),p=—1,{(-1)D3=q-=Tq=—3,/.f(x)=x2-x-3.F!"ᔠBḄᐗ!f[f(x)]=x,Gᓽ(x2-x—3)2—(x?—x—3)—3=x()Ḅ᪷.H()IJC(x2—x—3)2—x2=0»ᓽ(x2—2x—3)(x2—3)=0,Cx=—1,3,ᦑ8={—⌼7,8,3).M35OPQᡂ&ᑡᐸᵬVQᙠ᣸ᜮZVQᙠ᣸[ᐳᨵ]^_V`Ḅ᣸abcdH5OPḄᐰ᣸ᑡfgᐰ"I,iIḄᐗOᦪfgn(I),ᑣn(I)=Psஹ`᪵HᵬQᙠ᣸ᜮḄ᣸ᑡfgA,HZQᙠ᣸[Ḅ᣸ᑡfgB,ᑣn(A)=n(B)=P/.ᵫr2-1ᨵn(AUB)=n(A)+n(B)-n(APB).

5500r2-1ᦑᵬVQᙠ᣸ᜮஹZVQᙠ᣸[Ḅ᣸a_ᦪgn(tUR)=n().A.aWl,bWlB.,bWஹ/^C.ab.+82D.abW^a”+ᡈ5."ᔠA={2,4,x3—2x2—x+7},B={-4,y+3,y2—2y+2,ys4-y2+3y+7),ACB={2,5},ᑣAUB=.6.ᐰ"I=R,"ᔠ1=¡|¢=/°8஺g—1/(IxI-x)(a>l)},ᑣ¦'=__.7.©ªᑡ«O¬⚪dজA={y|y=x?+1,xWN},B={y|y=x?—2x+2,xWN},ᑣA=B®ঝ2AஹBᙳg°±"ᔠAnB=

56ঞA=B,ᑣACC=BnC®টACC=BCC,ᑣP=8.ᐸµ¬⚪Ḅ¶·!.8.M!ªᑡ;Oᩩ¹Ḅºᦪf(x)Ḅ"ᔠdজf(x)ḄD»!¼-L1®ঝxτ,xe—1,1,ᑣ|f(x1)—f(x)|W4|xi—X2I.22¾¿dDᙠ-1,1ÀḄºᦪg(x)=x?+2x-l!ᔲÂF"ᔠM?ÃÄÅᳮᵫ.9.m£R,"ᔠA={(x,y)|y=-A^x+m},B={(x,y)|x=cos஺,y=sinO,O<9<2n}.ACB={(cos01>sin0i),(cos0,sin02)»&tÆ},mḄ.210."ᔠA={(x,y)|y2-x-l=0},B={(x,y)14x?+2x-2y+5=0},C={(x,y)|y=kx+b}.¿:!ᔲÈᙠk,bGN,ÉC(AUB)AC=6?ÃÊÅËḄÌÍ.{⚪ÎÏо&ஹ⌱Ò⚪1ÓÔA(1,—1)ஹB(-1,1)ᙊÆᙠÖ×x+y—2=0ÀḄᙊḄ!().A.(x-3)24-(y+1)ØB.(x+3)24-(y-1)2=4C.(x—1)2+(y—1)2=4D.(x+1)2+(y+1)2=42.ÙᙊÚÓÛÔᯖÔgFi(1,0)ஹF(3,0)ᑣᐸÝÆ᳛g().2A.3/4B.2/3C.1/2D.1/43.ßÔPᙠÖ×x=1À0gᙶ᪗ÛÔâ0PgÖãäஹÔ0gÖã⚔ÔæῪÖãzãJOPQ,ᑣßÔQḄèé!().A.ᙊB.;ᩩêëÖ×C.ìᱥ×D.îï×4.îï×x2—y2=1Ö×ax+y+2=0ðᨵ&OñᐳÔᑣaḄg().A.a=±B.a=±1C.|aISD.a=±ᡈa=±15óßᙊMÓÔA(3,0),ôyõµᔣᡠC×÷BCøᢝú2a,ᑣßᙊᙊÆMḄèé!().A.y2=6x+a2-9(x>a)B.y2=6x+a2-9(y>a)C.x2=6y+a2+9(x>a)

57D.x2=6y+a'+9(y>a)6(4,2)!Ö×1ûÙᙊ(x'/36)+(y?/9)=1ᡠôCḄ×÷ḄÔᑣ1Ḅ!().A.x—2y=0B.x+2y-4=0C.2x+3y+4=0D.x+2y-8=07ᯖÔ!(4,-7)=(4,3)Ḅîï×Ḅᩩü×!5y+1=0,ᑣýîï×Ḅᩩþ×Ḅ!().A.3x-4y-20=0B.3x-4y=0C.3x—4y+4=0D,3x+4y=08ï×(x2/a)+(y2/b)=1=Ö×ax+by+l=0(a,bg°ÿᦪ).ᙠᙶ᪗,Ḅ().8-2092x2—yz—8x+6=0Ḅ%ᯖ'()1+,AஹB/'01τABI=4,ᑣ6᪵Ḅ)1ᐳᨵ().A.1ᩩB.2ᩩC.3ᩩD.4ᩩ10᝞8-21,?@AᙊḄC0ᙶ᪗D'0FFḄGᯖ'0AFG⚔'01,ஹbFJ01,+xK,'B,PஹQ/'ᙠAᙊN0OPM_LL,ᚖTFM,PM_Lh,ᚖTFN,QF_LA0,ᑣ(IPFI/IPMI).(IPF|/IPNI)>(IAOI/IBOI),(IAF|/IBAI),(IQFI/|BFI)0[\],Aᙊ^C᳛Ḅᨵ().

58yMN8-21A.1`B.2`C.4`D.5`11bᱥy=ax2(a>0)Ḅᯖ'F()+bᱥ,PஹQ/'01ePFஹFQḄfᑖhpஹq,klj(1/p)+(1/q)],().A.2aB.(1/2a)C.4aD.1/4a12Mbᱥy2=xN-'0Nᙊ(x+1)f(_2=1ᐵ,)x—y+1=0Ḅpqy4)N'0kUIMN|Ḅᨬt\().A./2)-1B.('v/2)-1C.2D.'ᨴ1wஹxy⚪13{ᙊ(x-3)"+(y-2)2=1}yK~ᔣb`ᓫ)y=x+lᑗ0ᑣbḄ\F14Aᙊx?+4y2=4fKN•`⚔'FA,AF)⚔'(•`ᑁ,AᙊḄ]Ὺ),Ḅ☢.15.(x2/9)-(yz/16)=1Ḅ/`ᯖ'FFiஹF,'PᙠN.1PFi_LPFz,2ᑣ'PᑮxKḄ^F.16?@A(0,5),eBCᙠxKN0OfF6,ᑣABC᜜CMḄஹ¡⚪171bᱥḄJ1Fx=-Lbᱥ£'R(1,2),¥ᯖ'FḄ¦RQḄ§¨'QḄ.18?@bᱥy2=2px(p>0),'M(a,0)O©᳛F1Ḅ)1bᱥ+,ªḄ/'AஹB,IAB|W2P(8-22).

598-22(1)¥aḄ¬\®¯(2)1eABḄᚖ)ᑖ+xK,'N,¥4NAB☢Ḅᨬᜧ\.19ᔲ²ᙠ³´Tµᑡᩩ·Ḅ01²ᙠ0¥¸ᐸ¯1ª²ᙠ0º»¼ᳮᵫ.(1)¿ÀFx+2y=0Áx-2y=0¯(2)'A(5,0)ᑮN'PḄ^Ḅᨬt\F,ᔊ.20.ÃAᙊF(x2/m?)+(y2/n')=1(m,n>0),D'OÆ©F஺È”஺(0<9<(n/2))Ḅ/ᩩ)ᑖh+Aᙊ,AஹCÈBஹD/'.(1)ᵨ஺ஹmஹn⊤ÍÎÏABCDḄ☢S¯(2)1mஹnF£\0Ñ஺ᙠ(0,(n/4))NÒᓄ³0¥SḄᨬᜧ\u¯(3)᝞Õu>mn,¥(m/n)Ḅ¬\®.§2ஹ×Ø⌕'ᙠÚÛḄ×Ø0Ü?ÝÞßàáâ¥Ḅãäåæ0ç[èéᦣ.å⁚ᡃíîᙢẆñ¥Ḅäåæ0òÜ᪷ôN'Ḅឋö0⌱øាÑḄ楸.1å⁚Ḅú⌕ᑁû¥Ḅüýäåæ——)þæஹ£ÿஹᦪஹஹᦪ.ᐸஹᦪᙶ᪗Ḅ⌱ஹᦪᦪḄ⌱ᡠ⊤!"#Ḅ“%ᜓឋ”“)*ឋ”.2-⚪/᪆12Ẇ4Ḅ5⌕ᑁ89:;<=>ᡂ@AὃC⚪ḄD.1999GHIJ@KL⚪.3ᙠO⁚QR;Sᳮ/UV᝞XYḄZ[\O(1)_"#`ḄabḄᩩd:e12fḄgfᐵ;ᑣj◤lmn[ᐵ“o”ᡂḄᙶ᪗xஹy(ᡈPஹ9)Ḅ;tᓄvᡠwx/Ḅᨬv;ᓽ@ᡠYḄ.ᐸ•|}~@::ᑡ:ᣚஹᓄv:.(2)abḄᩩdᔠ[ᱯ"#Ḅ;ᑣ᪷n["#Ḅ.(3)ᦪḄ[ᙊ┵"#;ᑣᐜᨵᦪḄ;᪷abḄᩩd;ᦪ;=YwḄ.(4)ᓽP(x,y)ᡈP(P,6)¢Ḽ¤:Q(x,,yl)ᡈQ(P1,91)Ḅ§=§;=Qᙠ"#`;_QḄᙶ᪗ᵨPḄᙶ᪗⊤!;ᑣᐭQᡠᙠ"#Ḅ;YwPḄ.Yª«"#>¬ᵨI.(5)ᦪPḄᙶ᪗x,y9®Ḅlᐵ¯᧕;〉ᙢ⌱³®´ft,¶ᵨt⊤!Ḅᙶ᪗xஹy,=wḄᦪx=f(t),f

60¹ºᦪt,»wPḄḄ¼½.S¾¿ḄgÀឋ;ᓽᵫtḄÃxஹyḄÃ.ÄஹÅ⚪Æ/Å1ÇᙊḄ@(x2/a2)+(y2/b2)=l,A-A2ᑖÉÇᙊḄÊஹË⚔;PÇᙊ`Í:;ÎAiQ_LA௃P,AQ±AP.22AτQÐA?QÑÒÓQ,YQḄ.Æ/

61y2=(a2(cos20—1)/(b2sin29)(x2—a2)=-(a2/b2)(x2-a2),ᓽ(x2/a2)+(b2y2)/a*=1.ᡠQḄ!."#2ᵨ%ᦪ'QḄ!(ᙠ*%ᦪ+(᦮-ᜐᳮ.(ᓄ123(456789:᦮-*%Ḅ";.<2᝞>8-5,ABCA(a,0)(a>0)GHI1:x=l,BHI1MḄN(NBOAḄQRᑖITABUC,CḄ!(WXY!⊤[\I]^_a`Ḅᐵb.cde"#1NCḄfNghiᩩkḄ▲ᑴe•oBᙠ1MḄfNpfN(q⌕stNAOONCOB.ᩩkuv(ᙶ᪗yzḄᐵb{᧕H}~(ᦑὃ⇋⌱zᓽ%ᦪ(ᔠᩩkḄ!ᑡB(ὶᔜ!(*%ᦪCḄ!.BḄᙶ᪗2(-1,t)(teR),ᑣHI()AஹOBḄ!ᑖ2yq0Gyq-tx.C(x,y),Iy+txI/Jl+J).ᑣᨵOWxVa,ᵫ0CRᑖNAOB,|y|q(জ§CᙠHIABM(Ay=-(t/1+a)(x-a).ঝVx-a^O,At=-((1+a)/x-a)y.ঞঞᐭজ(y2[1+((1+a)2y2/(x-a)2)]=[y-((1+a)xy/x-a)]2.᦮ᳮ(y2[(l-a)x2-2ax+(1+a)y2]=0.¬yWO,ᑣ(l-a)x2-2ax+(1+a)y2=0(0l+(!⊤[½\I¾¿Ḅ·¸."#2¬1_xÀḄT21),ÁCÂCE_LxÀ(ᚖt2E,ᑣᵫNAOC_NBODḄᐵb2ZA0C=n-ZB0D,ᵨH}'ᓽNḄ!.4567ÉÊËÌ.Í<"#1ᡠ!জஹঝᓽ2CḄ%ᦪ!(:%ᦪ!Î2“◚%ᦪ!”(ὶ*%Ò!.Ó!ট⊤[Ḅ\IÔ89ᑖ]XY.<3Ö×hCAஹB,ØIABI=2a(aeR+).(1)¬NM_AஹB᪀ᡂHQÜQÝ(HQ⚔MḄ!¹(2)¬NMstᩩkNMBA=2/MAB,MḄ!.

62cde⚪ᩩkàᨵABᙶ᪗b(ᦑÔᐜὃ⇋⌱â〉³Ḅᙶ᪗b(ᵨNstḄäåᩩkᵨHæ'd.çAஹB2hiC(ᦑABᡠᙠḄHI2xÀ(89ᑮÓÎឋ(ABḄ02ê~R☢HQᙶ᪗b(᝞>8-6ᡠ[.UAஹBhḄᙶ᪗ᑖ2í-a,0îஹía,0î.>8-6í1îMḄᙶ᪗2íx,yî,ᑣNMïUðᔠñ=òó|AM±MB,ØM{ᙠHIABIqõ.ᵫAM_LMB,|AM|2+|MB|2=|AB|2,ᓽ)2++y2)2=(2a)2,ØyNO.জᓄ3(X?+y2=a2(yWO).ঝᡈὅᵫAM_LMBVúkMA•kMB=-hy/(x+a)•y/(x—a)=-1,ঞᓄ3(x'+y'Ma"lxWÿa).ট(2)NMAB=Q,NMBA=B,ᑣMᔠP={M|p=2a}.ঠὃ⇋ᑮtg3Ḅ!ᙠឋ$%&◤ᑖ1ஹII,-./01.ூ..•4BW(n/2)8$ᨵtgB=tg2a.ড;OWa+BVᑍ,B=2a,OWa<(n/3).AᵫaVBCx>-a.ঢ᪷IMJxKḄLMNO$%&APᑖQ(i)ஹ(ii),-.S:(i)4y208$tga=k=y/(x+a)(xW-a),MAtg3=—tg(n—ZxBM)=—k=y/(a—x)(x#a).MBᵫtgB=tg2a,[y/(a—x)=(2•(y/(x4-a)/1—((y/x+a))2),ণ᦮ᳮ[y(3x2-y24-2ax-a2)=0.ত(ii)4yVO8$aᳮP[bc.H.Ax=a8$tgPe!ᙠ$fB=(ᑍ/2),g⚪ij⌕a=(JI/4),MlQᡠnopbḄ.*/1=tg(n/4)=tga=±y/(x+a)=±(y/2a),y=±2a,$sa,±2atᙠᡠnḄopb.u᧕wxsa,2atJsa,-2atḄᙶ᪗{|}~ত$ᦑᡠnMḄop~Qy=0sa+2ax—a2=0sx>—at.⚪ḄP%ᑮ$ᵨnsopt~8$ᐸḄs5tP%ḕᶍeᑏ$f⌕&1“ᨬ~ᡠnsopt~”$l◤wxḄ~¡Ḅ,ᩩ$%£xopḄ¤¥ឋJ¦ᜓឋ.᝞ᙠ⚪ḄḄজªঝa¬S$ᡠ[ᑮḄᨬ~ᡠnopḄ~.;

63ণᑮত$®¯y,ᑣ°±²ᣵ´AB(eµ¶)$ᑣope¦ᜓ.A᝞~ঞᑮটea¬S$¸8◤MxḄº»%▲ᑴ$ᓽxH¿a,¯ᣵÀ$%£xopḄ¤¥ឋ.A᝞ঠᑮড$4B=(n/2)8$eÁ[ᑮড$ᦑÂM6=("/2)»%wx$ÅÆw4B=("/2)8ᡠMÂḄA(a,+2a)ᙠᡠnḄopbÇᒹµᙠ~ত.⚪ePÉÊ⚪Ë◚µḄᩩÍ$᝞Î(1)ḄMJAஹB᪀ᡂÑÒS$MeᙠABb$Ó»▲ᑴᩩÍyWO,A᝞(2)Ḅ▲ᑴᩩÍঢ.ᔲᑣ°±ẚÖopḄ¤¥ឋJ¦ᜓឋ.Ñஹ×⚪ØÙ1--ÚᙊJ,ᙊx'+y2=1,x'+y2-8x+12=0{᜜ᑗ$ᑣÚᙊᙊßḄop().A.àᱥB.âC.âḄäåI).æᙊ2+°-1)2-Ix-y+3I=0,ᑣMḄop().A.ᙊB.æᙊC.àᱥD.â3A,ஹA?æᙊ(x,/9)+(y2/4)=1ëKḄ,ì¶$P,ஹP,ᚖA,A2ḄîḄ¶$ᑣA,p,JA2P2ïḄop~Q().A.(x2/9)+yz/4)=1B.(y2/9)+(x2/4)=1C.(x2/9)-(y2/4)=1D.(y2/9)-(x2/4)=14P(1,2)ñòä1ïxKA,Q(2,-3)ò1ḄᚖïyKB,Cᑖ´ABQô2,ᑣCḄopQ().A.6x+3y+4=0B.6x+3y-4=0C.6x—3y+4=0D.6x—3y—4=05õöÒQ(n/4)Ḅïæᙊ(x2/4)+y2=lAஹB,$ᑣ´ABḄMḄop~.6P%F,ஹF,QᯖḄâ(x?/16)—(y?/9)=1bḄÚ$ᑣúF,F?PḄûßḄop~.7ZiABC$B(ä(a/2),0),C((a/2),0),ýsinC-sinB=(l/2)

64sinA,ᑣ⚔AḄ.8A1,2,y᳛1/2Ḅᙊ!⚔MḄ$%&'().9A0,aḄ-./ᙊx—2?+y2=l678Bx,,y,/Cx-y?<=x,

65Ḅᙶ᪗)Ḅ¢<)7Ḅᙶ᪗<ᩩ)ᡂḄḄᦪ¢gᙠ¢⚪}ᨵåæᵨ.᪷¯á)U»ç⌕ÜÝ)iᙠḄé)[ᙶ᪗Ḅ7êឋÑëìn.2ḄNᵨyᨵ.íyஹÒyஹ-Éîyஹᦪy.[ᙊ┵)ᨵᐵḄª⚪ðᵨ•ñḄËy.òóÒyஹÔcᦪyᙠᱯôçḄᱯôVᵨ.3᪷¯ᙊ┵)Ḅã|õçÜÝ✌ᐜᓄ᪗»Øᡈ“᪗±”ᯠøùúûü¦ª⚪⌕ýᑮÿஹḄ.4ᙊḄ⚪⌕ᵨᙊḄឋ☢ᐸᶇ┵"#⌕$%Ḅ&ᵨ'(ᓄ*.5ᙠẆ-.#/01"#Ḅ23ᐵ5⚪᝞78ஹ9:7ஹ;ஹᚖ.=9⌕>?$ᳮAᑨCDḄ&ᵨEFGH᦮JKᐭ(ᓄ*.ᙠẆ-.#/01"#Mᐳ:Ḅ⚪9ᙠOᑮ•ᐗ01SAx'+Bx+C=OT⌕ᑖA=0/AKOVWXYZ[H\]^A=0ḄXY.6ᵫ`abḄSZ["#cd•e⌕bᦪᑖcZ[ᵫ`abᦪSḄ"#ᐹᨵiWឋHbᦪḄjkmneᨵVWSonpqr᪀⌼G=DuH\v0pqrwxy᪗{ᦪ|ᓄ}H{ᦪḄk~᝞2000ὃᳮ22⚪.ᦪᔠpHbᦪmḄᨵᦔSoḄ.7ᨵᐵ.#/01"#Ḅᨬk⚪nep⌕wxy᪗{ᦪ|ᓄ}Hy᪗{ᦪḄᨬk⚪ᩭ\.ᱯCpᙊ┵"#ᓃ:Ḅᨬk⚪ᵨᙊ┵"#ḄbᦪSne|ᓄ}{ᦪḄᨬk.8ᨵᐵᙠឋ⚪neᵨ“ᔲ$o”ᡈ“ᎷE£o”ᩭᜐᳮᨵᐵ.#/ᙊ┵"#Ḅ¥ᔠ⚪nep¦ᵨ“ᓄ᦮}§o”ᓽ©pªn«¥ᔠ⚪ᑖ\}¬(ᓫ⚪ᔠKᦪஹஹ=ᩭ\.3ᙠ¯°⚪Ḅ±²9n⌕³´µ¶“·”0⌕¸¹Kᦪºᳮ»¼Ḅ½.¾V:p¯°⚪±²Ḅ᪶ÀAᐵÁ.4⚜ÃᙠÄᩭḄὃ9¯°⚪ᑁÆḄὃǪ³´ÈᢝÊ$·Ạஹὃ»¼ḄSᔣGÍᦋÏ..#/01"#Ḅ23ᐵ5⚪ஹH"#ÐÑS⚪ஹᙶ᪗oஹ"#Ḅ·¯ÓḄZ[Ôªpὃ\᪆⚪ḄÖ⌕×ᩞ.\᪆Ḅ¥ᔠ⚪᝞1998ᳮ24⚪2000ᳮ22⚪pὃ\᪆Ù⚪Ḅn«ÚÛᔣ.ᨵᐵᨬk⚪ஹ$k⚪ஹ;⚪ஹᙠឋ⚪ஹ¶▭ᵨ⚪GÝ.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭