高考专家数学点评

高考专家数学点评

ID:83341626

大小:16.44 MB

页数:104页

时间:2023-07-17

上传者:灯火阑珊2019
高考专家数学点评_第1页
高考专家数学点评_第2页
高考专家数学点评_第3页
高考专家数学点评_第4页
高考专家数学点评_第5页
高考专家数学点评_第6页
高考专家数学点评_第7页
高考专家数学点评_第8页
高考专家数学点评_第9页
高考专家数学点评_第10页
资源描述:

《高考专家数学点评》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

2012ὃஹ⚪ᑖ᪆.┯஺ஹὃ⚜.....................7ஹ⚪ᢈᑖ᪆................10ஹ!"#$%..................81ஹ⚪ᑖ᪆2011ᦪ)*ᔁḄ-./2010ᦪ)*ᔁḄ-.ᨵᡠ234567ᑖ᪆2011Ḅᦪ)*ᔁ89:;<ᦋḄ⌕?4@ᵫ:ὃB⚪CD4ᡂGHCIᳮK஺2011ᦪ)*⚪Ḅ⚪#LMḄ⚪9NOP4ᳮQ12R⌱T⚪;ᨵ8R⚪U/Vᓫ4X6,10,11,12⚪/-4ᐸ;6,10\]^/ᜧ411,12⚪ᢈឋ/a4bᑖ/34ᐰḕᳮQ⌱T⚪eᙳᑖg33.49,U08,09ᨵᡠk2஺ᦻQḄ12R⌱T⚪;X8,10,11,12/-4ᐰḕeᙳᑖg30.32,mU08,09ᨵᡠk2஺no⚪H8RU/p᧕4R;r4R/-஺ᳮQᦻQeᙳᑖᦪᑖs88.77ᑖt6.54ᑖ4tvMwsCᜧ஺ᙠyz{Ḅ|R⚪};4~ᦪ⚪H

1⌕ᵨᑮᳮ44tw~4ᱯ~Ḅr?~C,-.Cᜧ,@)ByCIᳮK4ᳮQeᙳᑖg3.93ᑖ48LMᨬ3Ḅ4ᦻQ⚪ᵨᑮtᳮt~4-.〉;4eᙳᑖg3.4ᑖ48LMᨬḄ஺ᦪᑡ⚪}ᳮQ⚪⌕ஹ⚪ᑨ4ᓽbrwᦪᑡ4ᐸ⚗4ᑭᵨ¢ᳮᦪ⚗ᑖ⚗Ḅᢈz{RCr4N⚪-.8LM/3Ḅ4@eᙳᑖ£g2.26ᑖ48ᨬ3Ḅ஺ᑖ᪆ᐸ¤¥8)BCẚ⚪y⚪§¨┯஺ᦻQ⚪©D4-./34eᙳᑖg4.4ᑖ48LMU/Ḅ஺ª«M¬⚪ᨵᓄ4ᦋLMḄ¯°±⚪}4²8³¯┵⚪µ4-᎔·¸¹)B4ºᵫ:Ḅ»ᩩ½U/¹4)BCᳮ¾ᩩ½4yC¿஺ᐸÀXÁᵨÂç¨z{Ä£ÅᑮÆÇᳮÈÉ#e☢ᚖÈḄᩩ½ᓽb஺Ìᵨᔣ^ÎᦪḄ§¨yXÁÄ4ᨵRḄᙶ᪗⌕ÑRÒᦪ4ᵨ»ᩩ½yᡠÑḄRÒᦪ4ÓὃB²Ô8U/Õ-Ḅ஺XÁᵨÂç¨-./ᜧ4ᵨᔣ^Îᦪ§¨?ym⌕yRÒᦪ?e☢Ḅ¨ᔣ^Ö

2×yÈÉ#e☢ᡠᡂḄ~஺ᳮQஹᦻQᐰḕeᙳᑖᑖs84.21ᑖtL82ᑖ4ᑖᦪÙC4@UvÚᶍᨵÜÝ஺ᭆ᳛àᵨ⚪àá8LMᨬVᓫḄ4ÅᑮḄmC¹4\]^mCᜧ4@ᵫ:ὃBâᨵᎷÑä½4åæC¾ç4©¹ὃBᫀÙᯠê4@▬Ý·ìíᵬஹïÚðñ◅Ḅóªឋ4ᦋ·⚪ô4õᡷ·3ᑖ஺ᭆ᳛⚪᝞¬D⚪ÈøùὁûtὃB.üý஺ᭆ᳛⚪yþÿḕᶍḕᶍὁὃᑖ᪆Ẇᑮ஺2011ᳮ!ஹᦻ!ᐰḕ%ᙳᑖᑖ'(1.99ᑖ1.72ᑖ,-.(/0ᩭᨬ3Ḅᳮ!5ᨵ2789ᑖ77811ᑖᦻ!:ᑖ.;<஺=᪆0>⚪ᵫABCD(EF⚪ὃGHI⚪JKLᜧ8ᑖN3஺ᐸPQRC(=STUḄEFVᳮ!ὃWXLJQBCEFYᙊᕜ\Ḅ]^ᐳᙊᐸEF`abcdNJe\I⚪fghᜧ8:ᑖ;i᧕஺ᐰḕ9ᑖ5ᨵ1177%ᙳᑖ3.52ᑖ,/0ᜐAnop%஺qᦻ!ὃdrᑮJKLᜧᐰḕ10ᑮ12ᑖḄ5ᨵ37%ᙳᑖ5ᨵ0.66ᑖ(/

30ᨬ3Ḅ஺tᦪᵨ⚪ᳮ!⚪wNx⚨QRC;zᓫ(R|;}ḄEF⚪ὃi᧕8ᑖQBCᔠᭆ᳛EFU᪀`ᝯᔠឋᐰḕ9ᑖᨵ197%ᙳᑖH2.55ᑖ(/0N:Ḅ஺Wᦻ!ὃ⚪N}(R|ᦪḄ⚗URᩩᑗ8᩽ᦪḄᐰḕ%ᙳᑖH2.23ᑖw2010eN஺/0ᦪᔁὃ⚪JKᜧ¢£¤2010ὃ⚪JKᨵᡠe(¦/ᦟ¨©ªẠஹ⌚ᐰ☢ஹ¯nᨵ°ஹᱯ'²³°ᓄḄTUᔠឋஹµ¶ὃ·஺2010ᦪὃ⚪(¸2003ᦪ⚪JKᨬᜧḄR⚪ᐰḕᦻᳮ!ὃḄᦪᡂºᨬ:ᑖᙳ»¼140ᑖ%ᙳᡂº.ᨵNᜧ¾KḄ¿À஺2010ᳮ!ÁÂÃᦪBÄRᜧᐳ20ᑖ,¨Å0>ÄRᜧᐳ27ᑖ=᪆0>BÄRᜧᐳ22ᑖᦪᑡRÄRᜧᐳ17ᑖÇᔠஹB⚗Uஹᭆ᳛BÄRᜧᐳ22ᑖÈᦪஹÃᦪÉÄRᜧᐳ42ᑖᐸn⌱Ë⚪12|⚪n(8|Ni

4᧕ஹ2|nஹ2|NJ஺ÍÎ⚪n2⚪Ni᧕ஹR|nஹR|NJ⌱ËÍÎ⚪ḄJKÏ2009£¤°ᓄᜧ8ᑖ.ᜧ¢£Ð஺Ñ⌱Ë⚪8~12⚪nḆᨵNᜧÔghÕÖ<×oᓾRÙ⌱VÚÛÖ☢⚪ÜḄ=SÝᐸ(Q11⚪⌕EFJKᜧÍÎ⚪Q16⚪ß(à}⚪,q⌕Îo`â·NÍVḄ஺20106|ᜧ⚪nJKDᨵÐKḄeᙠäὃ⚪ªẠ\DᨵRÙ°ᓄ஺ÂÃᦪ⚪°ᓄᜧåὃV%☢0>Ḅᭆæçè=⚪éᑓW=(ëìÙᳮஹíÂᐵïஹÂðUHñ%ᙳᑖᶍᨵ¿Àò44ᑖ¿Àᑮ4ᑖ஺ᦪᑡ⚪QRCNzᓫQBCEFó;UôÄ8LÄὃõḄNöq÷᦮,ὃᑖᶍᨵe,%ᙳᑖò3.58ᑖeᑮ4.23ᑖ.¨Å0>⚪JKÏ2009/ù5ᵫAúûüýT%þÐÿᨵḄᓄ⚪ᓫᔣᦪᨵ!"#$ᢕ&'ᐵ)*+&,,./0ᑖ23456⌕8ᐭ6ᩩ<=>ᔣᦪḄᓫᐸ4@A

509CDE,FᙳᑖᶍᨵIJ,K3.98ᑖJᑮ3.33ᑖ.N08CḄ7.30ᑖ07CḄ6.98ᑖ$IJO஺ᭆ᳛Sᵨ⚪ᓄᜧ#VW⚪Xᳮ&Z[\]ᓽ_`]ᵫb&c&efg&hijkAஹB⊤nḄfgopqrstuᫀwx0ᑖ&y2ஹzὃVᳮ&Z&|ᑖ᪆0ᑖ&Oᐰḕyᑖ&Oᭆ᳛⚪6!*+!fghiu!&`ḕ!ḕᶍὃVFᙳᑖIJᨬOK5.88ᑖJ2.58ᑖ,08Cᨬ◅⚪Fᙳᑖ1.57ᑖCFᙳᑖḄC᪆>⚪&4,2izḄᙊAxDᑗḄ⚪⚨ὃVᢕ&'⌕u⚪&Wᐰḕoᨵz0ᑖyᑖ¡&OὃV¢£¤¥&ᱞ§FᙳᑖK3.36ᑖIJᑮ2.36ᑖ$N08CḄ1.92ᑖᶍy஺¨ᦪSᵨ⚪©f(x)ᐭªᓄªᡂ¬c&si4@&rᜧᵫbᨬª⚪®¯ᨵ▲Fᙳ0ᑖo0.76ᑖC

6ᨬḄ஺2]±ᦪaḄ³´µ¶&s⚪34©·¸¹ᦪ/•ಘᶇ᪷¿aḄ³´&sÀÁᜧÂÃ#V᪷£Ä&ᑮᐸÅᵨ]᩽▲ḄÇÈᛞᑣËÌÍy6ᦟᩞ⌕]⚪ᐰḕᨬyᑖoq010ᑖ7-10ᑖᐰḕo148⚪ÖᐭẆØÙ´&y&oW#V#Ú[WὁÜ¡qὃÝ,Þßàªá⚪&|ᙠÌãäå⚪஺ᦻçåè⚪ᨵ95ᑖAᳮç⚪D"ᐸ6⌱ì⚪68~12⚪WᦻçὃV34,ïð⚪615ஹ16⚪¡34ᵫbui⚪617ñzò¹ᦪóஹ19ñôõóஹ20ñᭆ᳛óஹ22ñ᪆óAᳮç⚪D"ᦻçFᙳᑖIJ¡ᜧJᑮ50ᑖIäCᨬḄ஺ᭆ᳛⚪WᳮçὃV4@ᜧ,WᦻçὃVö4,ᨵ50%øḄὃV0ùᑖᦻçè⚪Ḅᦪᑡ⚪û¨ᦪSᵨ⚪cḄ4@¡〉6ᵫbᦻçὃVý᝿ᦪ#ÿ᣸⌱⚪ᵨ▲ᦪᑡ⚪ᙳᑖ4.9ᑖᑮ1.45ᑖ;ᦪ!ᵨ⚪ᙳᑖ2.52ᑖᑮ0.96ᑖ,&ᨵ()*+,ᧇᦻ/0ᦪ!ᵨ⚪12345ᨵ6ᓄᓽ9ᐗ;<=⚗?@AᦪBCDE

7ឋᓫHឋI᩽K⚪L!MNOᑖḄQὃS=T,஺20093VὃᦪWᳮ/0OᑖYZ20103ὃ⚪[\]^ᐸ`12a⌱⚪`,8ade᧕ஹ2a`hஹ2adi஺4a⚪`2ade᧕ஹ9a`hஹ9adi஺jdiḄ⌱⚪ஹ⚪,Wkᡂm`hnḄ^Wopqrstuv⚪wxty☢Ḅᜧ⚪|v஺6aᜧ⚪`ᨵ3a⚪de᧕~;ᦪஹᭆ᳛ஹᦪᑡᭆ᳛⚪ᑖ122000+9a⚪`h~2M⚪d3ᨵ96ᓄ9ᵨᓫᵨᔣᦪᓫa⚪di~|᪆2Zᦪ9ᓫi஺ᑖᦪ`ᙠ3-4ᑖVᑖ=᝞22⚪10ᑖnᐰḕ14+21⚪ᑖḄᐰḕ147+20093VὃᦪWᦻ/0190ᑖZᳮ/¢ᐰ]^ᦻ/0ὃ⚪Z20103ὃYḄ⌕IOᑖᐸ`12a⌱⚪Z4a⚪i᧕¤¥Z083[\]^⌱⚪ஹ⚪`jᦻ/S¦§ᔜᨵ©a⚪di஺☢ª)123ᦪWᔁOᑖᑖ᪆/3ߟᦪᭆ|ᑖ

80¥ᑡ2᳛2ᦪ2004.50.96.94.44.62.832.48.067178292520010.06.21.97.31.51.91.830.8842507211ᳮ2003.53.95.83.32.431.78.084.498886202014.23.32.52.30.726.69.394.003386652003.72.13.90.63.425.17.923.382862992002.61.72.61.42.521.5ᦻ5.644.992893282011.61.41.21.33.60.917.16.9202550262ᐰḕ20083ᳮ/ᙳᑖ®68.04~⌱⚪ᙳ37.23ᑖ¯°᳛®21.13%ᐰḕ20083ᦻ/ᙳᑖ®59.67~⌱⚪ᙳ34.48ᑖ¯°᳛®19.67%ᐰḕ20113ᳮ/ᙳᑖ®60.72~⌱⚪ᙳ

933.49ᑖ¯°᳛®15.65%.oᐰḕᨬVᑖ146ᑖ஺ᐰḕ20113ᦻ/ᙳᑖ®51.09~⌱⚪ᙳ30.32ᑖ¯°᳛:9.70%஺ᐰḕᨬVᑖ143ᑖஹὃY⚜¶~-;ᦪ0<1>ᙠ;¹ᑁᑭᵨ¼½ᳮஹ¾½ᳮ¿Àᐵ¯ᦪ⊤Ä?IᐸÅÆᓄ^9ᦪIᨬᜧᨬÇK⚪ÈAὃ20073ᦻᳮ/É⚪஺<2>ᑭᵨ¼½ᳮஹ¾½ᳮஹhÊᦪᑡஹhᦪᑡஹËÌ?ஹÍÎÌ?I;ᦪḄK¯;¹ÀḄKÏ90Ðᔠ⚪LÈAὃ20053ஹ20063ஹ20083ஹ20093ஹ20103¯20113É⚪஺<3>ᑭᵨ;ᦪḄÒ¹IᦪḄᕜÔஹÕᡈpᜧ×ÇIᦪḄᨬᜧÇKᵨ;ᦪḄឋØIᱯÚÛᱯÚḄKᡈᵨKIᐸ¥

10ᑭᵨ;ᦪÒ¹ᑨᐸDEឋ¼Ýឋh஺~-ᦪᑡ0<1>Þßhᦪᑡ~àáÞᡈ^E9aâᦪᡈ^E9aã஻Ḅᦪ஺ÞßhÊᦪᑡ~àáÞᡈ^◀n9aâᦪᡈ^◀n9aã஻Ḅᦪ஺<2>ᑭᵨæ⚗ÍçèÍḄᐵ¯hஹhÊᦪᑡḄឋØIᦪᑡḄæ⚗éÞßᐸæ⚗Ì?Þß90h?஺<3>ᵫª)Ḅëìᩩîஹᑭᵨæ⚗Ì?¯çèÍÌ?ὶ¤ðI✌⚗ஹÌÊஹÌÍò⚗¯çèÍ஺nᔜó⚪LÈAὃ153ᦻᳮ/É⚪஺~;20<1>ÞßÀZÀஹZஹôZ☢ஹ☢Z☢ᐵÂᵨ¯ᔣᦪḄIôZ☢ஹ☢Z☢Ḅᜳ¯ᱯöNãᨵ÷ìAᦪḄÐᔠ⚪,ÈAὃ20093ஹ20103¯20113É⚪஺<2>IYᑮôஹYᑮ☢ஹôᑮôஹ☢Z☢Ḅøù஺ÞßàôúNû☢àôḄÌᚖôh஺

11<3>jýþ☢ᓄÏ☢2I☢ÿஹ⊤☢ஹᐰ☢⚪஺ὃ5ᦻᳮ⚪஺ᭆ᳛<1>"#$᪵&ᦈஹ(ᦈḄᑖᑡ,ᑖ-$᪵Ḅ./,0ᦣ23456Ḅᦪ89:ஹ.;஺<2>=ᐺᭆ2?ᭆ᳛Ḅ@,ᑭᵨCDEஹFDEஹGHDEDEḄIHឋKDELMḄᭆ᳛,N⚗ᑖPḄᑖPᑡᦪ89:Q.;ஹR᝱ᑖPஹ᪗UR᝱ᑖPḄᱯឋ஺<3>ᭆ᳛XᵨY9:ᦈZஹ9:ᑭ[ஹᨬᜧ9:ᡂ_ஹ`ᵨᨬḕb஺᝞d◅fgᨬhd`⚪ஹᵯjRklmb⚪஺ὃ5ᦻஹᳮ⚪஺no᪆qr<1>ᑭᵨstuஹvᱥuஹxᙊḄz{ஹᯖ}ஹUuឋ~ஹᦪ6ஹᦪᑡḄᔠXᵨKo⚪2஺uQᙊᑗ,}ᐳᙊb஺<2>ᑭᵨtuḄឋ~K0᳛ஹuCஹஹᡂ☢Ḅ☢b஺<3>}Ḅ⚪,ᦪzt

12uu.஺ὃ5⌱ஹo⚪஺¡¢ᦪ£ᦪXᵨ<1>K¢ᦪḄᓫ¥¦§ஹ᩽ஹᑗuḄ©᳛ஹᑗu.ஹªᜧ«b஺<2>ᑭᵨ᩽ஹ¬¢ᦪஹᓫ¥ឋ®b,¯ᔠuឋ°ᑜK¢ᦪḄ஺<3>ᦪ®b¢ᦪḄ஺ὃ5Ḅᦻᳮ⚪஺

13³ஹ⚪ᢈµᑖ᪆(-)⌱⚪(12¹ᐳ60ᑖ,ᓰ½ᑖ40%)⌱⚪ÀÁὃÂḄÃὃMGÄ_ᭆÅ,Ä_ᳮḄᳮoQÆÇ,ÈÉ⌕KὃMËÌÍ,ᑗÎÏᑮÑÒᳮoÄ_ᭆÅ,ÓÔÕÇÄ_ᳮ,Ö×ØÙᐵᭆÅஹᐵᳮ§Ḅᨵ4ὶÝ,ÈÃÏÞ⌱⚪ḄÄẠCàá஺ᐸã,⌕ÕÇo⌱⚪Ḅäkᵨ./,ᑖ᪆@/ஹo/ஹᱯå/ஹ᣸◀/ஹ⌮é/êë/b஺⌕×ì᪷î⚪ïᩩEஹᜓ⌱⚗Ḅᱯò,ᗐô½¯ᑖ᪆,ᮣö÷ᵨᨵᐵḄᢈµQ./,øùo,Ö×úû«⚪ᜧÏ,ÈÃáüo⚪ᦔþCRឋḄᨵᦔ⌶஺⚪ᑣὃஹᓄᑨḄ஺20002011ᐳ12ᑁ!31A37B45C31D20073A3B4C2D20082A4B4C2D20093A3B3C3D20102A4B4C2D14

14ᳮ.⌱0⚪120114A3B2C3Dᐳ23ᦻ.⌱0⚪1ᐳ2328A37B47C32D20073A2B4C3D20082A4B4C2D20092A3B4C3D20102A4B3C3D20n2A3B4C3D678ὃ9⌱0⚪:ᫀ18<⌱⚗>?23@A>B23CADEFGHᙳ(B)(C)ᓰFMGᜧOᓰ60%,ᵫ8⌱0⚪1ᨵ8-9<⚪FGV᧕ᙠYẠ[E\⚪]^_6`67]⌱0ab:Ḅ⌱⚗1215

153G?cᳮd[ᑖ᪆g]23GBḄ⌱⚗h[ijᡃlmnopᑖ᪆qp⌱0,ᨵ6rḄᦔt஺67uFGᜧḄᨵ6r\vḄ]ᵨ⌱⚗xyzᩩ|ᡈ~d⌱AḄ]ឋGᜧ;67\vGᜧᑁV⚨,HḄ⚪B<⚪ᑨḄ⌱DḄ]ឋGᜧᐸij]ᵨbjஹᱯjஹ᣸◀jᑖ᪆j஺2010-2011ὃᦪᑖ⌱0⚪ὃb:6!⌱0⚪(1)ᦪnzḄᐳᦪᑣ—(B)(A)-2/(B)-z(C)/(D)21b:!z=1-z,zz=29ᑣzz-z-l=2-l6=,ᦑ⌱B஺(2)¢ᦪv=2«so)Ḅ§¢ᦪn(B)(A)y=3(xeR)(B)y=3(xN0)(C)y=4x?(xeR)(D)y=4x2(x>0)b:ᵫy-14x9xNO,°Uy2=4x,x=—9y>04=>y=+2(x20),ᦑ⌱B஺16

16(3)`☢C<ᩩ|1³”6ᡂ¶Ḅᐙᑖc¸¹⌕Ḅᩩ|»(A)(A)a>b+\(B)a>b-\(C)a2>b2(D)/>/b:!¼a>b+lᑣa>6,ᦑa>6»a>b+lḄ¹⌕ᩩ|¿°L%ᡂ¶Ḅᐙᑖc¸¹⌕Ḅᩩ|»ᦑ⌱A஺(4)Ás,nÂÃᦪᑡÅÆÇḄÈ஻⚗Ê,¼ËÃd=2,S*+2-S*=24ᑣÏ(D)(A)8(B)7(C)6(D)5b::ij6:a-1+2(H-1)=2/1-19=2Ò+3nÓ=2&-1&+2=g(4+%2X&+2)=3(2k+4Xk+2)=k2+Ë+4S=(஻]+஻«)ᦇ=—(2k)k=k?,5Ò+2-5&=4Ó+4=24,k=5ᦑk⌱D஺ij@!2-1,ᑣÂÃᦪᑡn1,3,5,7,9,11,13,ᵫ11+13=24,ᓽS7-S5=11+13=249k=5,ᦑ⌱D஺(5)Áq/(x)=cosa)x(co>0),ÜÝ/Þ)Ḅßᔣá17

17Hâã<ᓫåævçᡠéḄßêëßᔠ°!kḄᨬïÂ(C)(A)1(B)3(C)6(D)9b::ὃ⇋y=coscoxḄᨬᜧ9COS6=1,X=0,71IgᔣáHâ?COS69—=1g>03CO^=2719CO=69ᦑ⌱Co(6)añò--☢óa-l-13,ôAõ&,AC_L/,Cnᚖ÷Be/39BDll9Dnᚖ÷¼AB=29/AC=BO=19ᑣ஺ᑮH☢ABCḄùúÂ(C)pB(A)(B)(C)ü/(D)11b:!AD=BC=^22-\=y/39CD=419ÁDᑮH☢ABCḄùúnh,ᑣᵫC☢þþÿV-—SMe,BD=-x—xV2x1x1———3AAC஺326Vy=3-S4MBe,T,ᦑ66V33⌱c஺(7)ᨵ᪵Ḅ2᪵Ḅ18

1834〈4!"!1ᑣ%Ḅ〈&'ᐳᨵ(B)(A)4+(B)10+(C)18+(D)20+012C+cKo,ᦑ⌱B஺c2⊤48928:;<=8:>⊤48938:;?8:஺(8)@AᙠC(0,2)ᜐḄᑗAFGA…I…JᡂḄLMNḄ☢PQ(A)(A)1(B)1(C)2323(D)1012y^-2e-2x9y(0)=—2,ᑗA&Uy-2--2x9ᡈ2x+y-29WX஺,Y!Jg,0F,1Ḅ]C|,y=SA=[X1X|=_,ᦑ⌱AO(9)abcᕜeQ2Ḅ᜻gᦪi02j,/(x)=2x(1-x),Y(1/(-|)=(A)(A)-1(B)-1(C)1244(D)12012f(x)=-f(-x)9/(2T+%)=/(%)ᑣ19

19/p-$=/p-2?_r=/p?5=?ᔩr=-2x|xpl-1r=-1,ᦑ⌱A஺(10)vwxᱥAC:/=4xḄᯖCQ|GAy=2x-4FC]}A,B#$,ᑣcosZAFB-(D)(A)|(B)|(C)(D)/55012p=2,1=1,ᑣᯖCQ1,0),ὶX=4,y=2x_4,X2_5X+4=0:Ap4,4r,Bp1-2r,AB=(,AQ=5,BF=2,ᵫ;ᳮrnr|…C45-25-44AB'=AF2+BF2-2-AFBFcosAAFB!JcosZAFB=---------=——92x5x25ᦑ⌱D஺(11)vw☢a?ᳫ☢:ᙊM,ᙊMFaᡂ60஺=☢MḄ☢᜛ᳫ☢:N஺ᳫ☢ḄQ4,ᙊMḄ☢PQ4ᑣᙊNḄ☢PQ(D)(A)7஻(B)94(C)1UpDr137r012aᙊMḄ/¡2=4¢=2=AM9OB=R=4fY!)OM=A/42-22=273920oC

20ON=-0M=439OC=R=4OV=¥=&-3=§,5“=¡2=139ᦑ⌱D஺(12)aᔣaஹbஹc«|a|=W=1,ab"f=60"Y¯Ḅᨬᜧ²³}(A)(A)2(B)V3(C)oQ)1012ᵫ=´=1,a/=-:,QbCOS&'?2ᵫµCᐳᙊiZADC=ZABC=90",Idᨬᜧ²¸|ᨬᜧ²Q2,¹jACQᙊGᦑ⌱A஺&'=2sᜳMḄᑖA¼…,…ḄᜳMᑖAᑣmax|c|=2,ᦑ⌱A஺(4-0-c)=¸-¾-c\-cos60஻4—•=_¸?(a+/?)•(:+|c/,YÁ|c|2<2+(6z+Z?)-c<2+|c|,Å…Æ-2Ç+È0,|c|<2,ᦑ⌱A஺(13)aᔠU={1,2,3,4}M={1,2,3}9N={2,3,4}Y(J21

21c,WnN)=(D)(A){1,2}(B)(2,3}(C){2,4}(D){1,4}01ᑣC.(MnN)={l,4},ᦑ⌱Do(14)aᔣΫ==1,4Ï=?_ᑣb+2Ñ=(B)(A)5(B)Ò(C)6(D)Ó01¸+2ὡ=Õ9ᦑ⌱B஺(15)ÖΓ׫ØÙᩩÛ|x-3j<-2,ᑣx>1,z-2x+3yḄᨬÞ²Q(C)(A)17(B)14(C)5(D)301CA(4,2),8(1,5),C(l,l),24=14,Zp=17,Z=59minZ-59ᦑ⌱C஺(à22,5,6,7,8,c10,12Fᳮ)(16)vwG=☢Mcc—I—/3,A?AáaACA.I9CQᚖ«Bã᜛BD±l9DQᚖ«48=2AC^BD=\9ᑣCD=(C)(A)2(B)g(C)V2(D)122

22(17)4"8ᵬஹåஹæ3çèU⌱é1çᑣាᨵ28⌱éèUᵬḄ%⌱'ᐳᨵ(B)(A)l+(B)24+(C)30+(D)36+01ᦑ⌱B஺ë⊤489⌱?8⌱ᵬc;38⌱ᵬ஺(18)aìíGஹGïIìᙶ᪗òóᑗïC(4,1),ᑣìᙊḄôõ|GG|=(O(A)4(B)4ö(C)8(D)8V201x=5-25/29(4-x2)2+(1-x2)2=x229x2=5+2V29}|஺£|=ø2_Ï=4•⊈=89ᦑ⌱c஺úû⚪(1)(1.ý஺Ḅ=⚗ÿXḄᦪx9ḄᦪC-஺xḄᦪḄᦪC209Co-C=O஺(2),sina=$ᑣtan2a='4/3஺\2)5csca=V5,cot6z=-2,tan^z=-^tan2,=2ᵨ41±?=T9:ᵨ;<=ᣚ?@Al-tan-a]_(E)2323

231tana=——o2(3)FGᑖIJKLḄMஹOᯖQQQMḄᙶ᪗(2,0),AM“AKḄXᑖLY—o:a1=9,b2=219c=-Ja2+b2=6,F](-6,0),F(6,0),]\AF\=d9(x-6)2-i-y2=d29(x+6)24-y2=4J2(AM22ZFAFḄXᑖL`a|=8,\MF2\=49ᑣd=2|e|),t2ᑣ24x=3/x^-d29fy2=-27+3x2=ᐭ8'ফ+36-27+3/=8x,4x2-20x4-9=0,(2x—99'1)=0x=^()9x=g,d2=Sx=369d=6o(4)jᡝᑖIᙠmnoABCD—i415]C\DyḄpBB19CCqrB]E=2EBCF=2FC],ᑣ☢AEF☢ABC[ᡠᡂḄ4☢<Ḅmᑗwxytana=#o{A(0,0,0),£(0,3,1),}(-3,3,2),3஽=AExAF=(1-1,3)9%=(0,0,1)9cosa=-j=,tana=——o3(5)(')஺Ḅ4⚗,ḄᦪḄᦪ24

240o(6)aItana=2,cosa='஺'஺(7)mnABCD-A|5[C|Z)|EGPḄQᑣ☢LAEBCᡠᡂ<Ḅw23mno1,ᵨᔣn?ᡈᳮᓽ:஺;ஹ2010⚪஺1ஹᳮবᦻম¤¥¦§¨©ªᩩ|¬'ᑣZ=2x+yḄᨬᜧwI()(A)1(B)2(C)3(D)4:±²;

25(A)14(B)21(C)28(D)35%+4+a53஺1+9d=3(஺]+3d)=124+3d=46x(6+l)a2-\-----Ja?=7a,+-----------d—7(஺]+3d)=28⌱(C)ᡈ{2+4+6=12,§¨ᩩᑣᵫ-2+0+2+4+6+8+10=28,⌱(C)3ஹᳮ(5)¿xÀÁ஺ḄÂ()X-1(A){|2,ᡈ.>3}(B){x|x<-2,ᡈ1஺<3}(C)/|ᡈஹ>3}(D){|x-ᡈÈ2*6>0=}-2ᡈQ3nx[x>\[x>lᡈᔆ'-6<0ὡ—2Vx<3=_2«]⌱(C)x

26ᑣ¿ÕḄÔ?ᐳᨵÜÝÜAÝ12ÞÜBÝ18ÞÜCÝ36ÞÜDÝ54Þ:஻=cLcL=18,c⊤à3,4,5,6á{2³ᓱÐâ⊤à;³Ö×á{'³Ôã2³ᓱᱏ஺ᑣ⌱ÜBÝ5ஹᳮÜ7Ýäåᑮçᦪy=sin2x-yḄèéê◤ìçᦪy-sin2x+—ḄèéÜÝ6ÜAÝᔣMXí:³îᓫðÜBÝᔣ4OXíñ³îᓫð4ÜCÝᔣMXí;³îᓫðÜDÝᔣOXín³îᓫðὃ⇋{ᨬᜧwôõ21-öᑣx=3ᐔ,fõ2X+CJYW⌱ÜBÝ1262612646ஹᳮÜ8ÝᦻÜ10Ý°AABCQDᙠABqCDXᑖZACB,PQ=a9CA=b9B27DA

27Õ=1,Ml=2,YUù=()(A)L+L(B)2a+4(D)333355ᓃ+55n?'èCD=CF+CE=^a+^b⌱(B)n?4ᵫAD:DB=2:1ᓽ:⌱(B)n?;ᱯw?{4=90஺YñJZA=30°ZDCB=30°BC=1.长为8="ᵨ⌱⚗(A)(BlCDl==|^⌱(B)7ஹᳮ(9)'mýp┵S-ABCDSA=26¼½ÿ┵ḄᨬᜧḄ()(A)1(B)(C)23AB=x,!]AO=[x,SO='(2য2_#='12—#V2=-X4(12--X2)=-(12X4--X6)-929228

28s243(V2)=-(48x3-3X5)=09X2=16,X=4fS0=2⌱(C)⚪!"#ᵨ⌱⚗&'()*+ᓽ"஺(A)V=22/3,(B)V=6.(C)V᧖(D)V=6,⌱(C)o8.ᳮ2(10)3456■ᙠ9(.,/)ᜐḄᑗ5>?@ᙶ᪗CDᡂḄFGHḄ☢18,ᑣK()(A)64(B)32(C)16(D)8ᑗ5NX/=8,a-64f(A)♦9.ᦻᳮ2(11)>MNABCD—/41ByC[Z)|ḄFᩩABஹQஹA?ᡠᙠS5ḄTUVWḄ9

29(A)ᨵZ[ᨵ1@(B)ᨵZ[ᨵ2@(C)ᨵZ[ᨵ3@(D)ᨵ^ᦪ@\⌱(D)ᵯaḄ9bcd10.ᦻᳮ2(12)fghᙊ஺JW=1(4Q஺)ḄUo᳛ᙶ,ah2qrᯖ9FZu᳛ᜧv஺)ḄS5>CVwxAஹB?9஺3y=3FBᑣk=()9⌱(B).{a=2,b=l,(Je\ὃ=ᓽ2AE஺11.ᦻ2(7)30

30345y=xx+bᙠ9(0,b)ᜐḄᑗ5NXx-y+l=0,(J()(A)a=l,b=1(B)a=-\,b-1(C)a=\,b=-\(D)a=-l,b--1=2+a,ᑗ5u᳛᝕=0=஺=1(0,6)ᑮS5NX0—8+1=09b=lO⌱(A).12.ᦻ2(8)SF┵S-ABC☢ABCWx2ḄWFGHSAᚖSx☢ABC,S3,S5A5>☢ᡠᡂGḄM()(A)(B)Z44@©4(D)τ\¡{A(0,0,0),5(0,0,3)C(0,2,0)\5(73,1,0),¢=(-ᢈ1,0),w=(0,2,-3)•☢SBCḄ¡ᔣ§¨©ªব3¬/2ಘ{¯=(73,3,2).AB>☢SBCᡠᡂḄGa,>NᡠᡂGᑣn•AB63sina=cos/?=⌱(D)472-4¡ADIBC°SDᑣSDLBC98CJ,☢SBC31

31°BE,ZABEAB>☢SBCᡠᡂGᵫfgAD=73,SD=2V3,SA1AD3^3sm46E=^=3/2=3⌱´)AE===SD2732AB2/413.ᳮ2(13)fg°¶·▲ḄGtan(%+2a)=-g,ᑣtana/Cஹc2tana42tan(^r+2a)=tan2a=-----------=——,2tan<^-3tana-2=0᜛l—tan-஺3(2tana+l)(tana-2)=0tana<0Utana14.ᳮ2(14)>ᦻ2(14)º»3“)9Ḅ¼½¾dḄ¿ᦪ84,ᑣXTk+l=4À(Á)*=(a)"CÁÀᵫfg92Ã=3,k=3C(-a)3=-84(Ja=1915.ᦻᳮ2(15)fgÅᱥ5C:y2=2px(p>0)ḄÇ5,,qA/(l,0)Zu᳛ÈḄS5>‘VST$A,>°Ḅ@w98.3ÊË!Jp=.¡ᵫk=U),ABNX32

32Ìߟ1)ᑣÎឋ,Ð1+.,ÑᵫM(1,O)"Ḅ89ᙠÅᱥ5J=2pxa[73(1+1)]2=2Pg+2)Óp=2¡:ᵫNBMx=ÕnZDAB=-,BD^-AB^-(AM+MB)^MB,3622ᵫÅᱥ5×Ø"(1,஺)ᯖ9V1,h=2.¡F"ÙÚÛ஻=ÝÞᯠàcdᩩáâ”2MN=2,4(1,-2ã)BD=4=2MN.äåÓM(1,O)9஺16.ᦻᳮ2(16)fgᳫ஺Ḅèé4,ᙊM>ᙊNᳫḄ?@êᙊ”ᙊM>ᙊNìFᐳḄîᐳA8=4.30M=ON=3,!ÝஹLÎᙊᙊoḄTUMN=.᝞\R=4,AB=4,OM=3f\OABWGH00=2ᵨNOMD=90஺cosNMOD=W=X,NMOD=30°,ðᳮñNêᙊ஺N9NNOD=30°kOMNWFGH.w=333

3317.ᦻ2(13)fga¶·▲ḄGtana=-g,ᑣ\a---V5óa¶·▲GY/tan%=cosa,ô᝞\õᑣcosa=--V5.1=V55öஹ2008—2009ùúû⌱ü⚪Ḅý1.ôᳮô3õõfg4ABC3Îþ,ᑣcosA=ôDõ(A)1|1213ᵫᑣcosA<0,cosA=-j|,ᦑ⌱(D).34

342.(ᳮ(4))y=ᙠ(1,1)ᜐḄ2x-lᑗ(B)(A)x-y-2=0(B)x+y-2=0(C)x+4y-5=0(D)x-4y-5=0:"(1,1)#ᐭ⌱⚗(A)(D)&'(,ᦑ᣸◀(A)(D)+,,-./0ᦑ⌱(B).3.(ᳮ(5))3456"CD—'GR704Al=2AB,E8AA1Ḅ70ᑣ9☢;ᡠ=>?DiᡠᡂAḄBCD8(C)E(A)f(B)1:rn'1E:&JK3456LMN8AB8OPQRS;Aᙶ᪗V0ᑣ0(0,0,0),C(0,l,0),3(0,0,2),£(1,0,1),5(1,1,0).W=(0,-1,1),X=(0,-1,2),X.Z[ᦑ⌱(C)ᡈᵨBBE-CD.V2-V51035

35C^ᳮ;_`ab,஺.4.(ᳮ(6))ᔣfa=(2,1),ab=10,\a+b\=572,ᑣ.1=(C)(A)&(B)᪗(C)(D)255KB=(x,y),hijᨌ3=2x+y=10,a+b=(2+x,l+y)9ᑣ50=B+B(=(2+j)2+(l+y>^5+2(2x+y)+x2+y2=25+ẖWl=25,n=5,ᦑ⌱(C).ᡈk+b2=o2+ᝰ+2rs50o=5,|^|2=50-20-5=25,n=55.(ᳮ(7))Ka=log3719b-log2V3fc=log3V2,ᑣ(A)(A)a>b>C(B)a>c>b(C/b>a>c(D)b>c>aa>1,b<],c<1,ᢘFy(C)(D),b=-log,3,c=z-—,b>c,JUl]a>b>c9ᦑ⌱22log,3(A)6.ᳮ8"ᦪy=tan62¥+—69>0Ḅ4ᔣ5ᓫN,=ᦪy=tan5+—6o36

36Ḅᔠ,hkḄᨬD8ঞ(A)l(B)l(C)1642⚪0)+=CDX+—J—CD=—9CD=—y64ool22ᦑ⌱(D).7.(ᳮ(9));y=k(x+2)(k>0)=ᱥ0:ு2=8ᡀ¡¢/4,6£0/8CḄᯖ0\FA\^2\FB\ᑣk=Zf(A)l(B)#(C)|τE§z:᝞,F(2,0),©z2D\BD\=\BF\9ᑣᵫ,▢=2«P(-2,0)°FC*)+ᵫ¡¬A®,◍=|°,B.7.KA(஺)08(…)0ᵫ7²³O3%+0x220ᓽµz¶)0·86ᙠᱥC¸0ᦑᨵ஽=8ᘊ-1)0¼=32,%=4&,½=4,=:¾,⌱(D)41O4—(—2)3§.ᱯÀD§0Á37

37A(4,4V2),B(1,272),Â(2,0),\BF\=39M=6,'(ᩩÄ0ÅÆÇ=È.⌱(D)4-13§§0ᑭḄÊ᳛_Ì1.(D)ᨬ_ÌL8.(ᳮ(10))ᵬஹУEÑ4ÒÓ7ᔜ⌱Õ2Ò,ᑣᵬஹÐᡠ⌱Ó7Ö×ᨵ1Ò&¡oḄ⌱§ᐳᨵ(C)Ù(A)6(B)12(C)30(D)36§z஺Ú=36⊤ᵬஹУEÑ4ÒÓ7ᔜ⌱Õ2ÒḄ⌱§(᣸D),⊤ᵬஹÐ⌱Óᐰ¡o0ᦑᡠÝ836-6=30Ù.⌱(C)§.ាzÒ&¡o⌱§8Cß=24ÙᡈC}C\=24Ù0£Òà&oC[CL=6Ù0ᦑᐳ30Ù.⌱(C)ᦻâÁ⚪ÝាᨵzÒ¡oḄ⌱§0ᓽាᨵzÒ&oḄ⌱§8ᡈᑗ=24Ù.9.(ᳮ(11))ãC4zஹ=1(஻>0/>0)Ḅᯖ8F,åFæÊ᳛86abḄ;¢C/Aஹ8£0⊟=4è0h!|cḄë38

38Å᳛8CA)(A)9(B)((C)I(D)595᝞,K᪻8CḄ©yîDᑣï=ð=Kïñ\AD\\BE\ᵫ¸³0|BF|=ke,\AF\=4ke0\AD\=4k9+|AG|=g|4B|,ᑣ0E/\4k-k=—•5ke0e--,⌱(A).2510.(ᦻ(3))òy=bg,s2+xḄAAᐵ/OôõBᐵ/;özôõCᐵ/y÷ôõDᐵ/;y=xôõ·8y(x)=log=log,=y(x),ᡠüஹ8᜻22-x2+xᦪ0ᐸÿᐵ⌱(A).11.(ᦻ(7))a=Ige,b=(Ige)2,c=1gJ(B)(A)a>b>c(B)a>c>b(C)c>a>b(D)39

39c>b>aft?•0(Ige)2,a>IgVeᢘF(C)(D)3^c=lg஻=&lge>(Ige)?=b⌱(B).12.(ᦻ(8))01=2=௃Ḅ561763ᙊ(x-3)2+y2”?ᑗᑣB(A)(A)G(B)2(C)30)6CD561y=3ஹx-y/2y=0,d=r=ᓽ=M9J2y/3⌱(A).ஹ2008—2009IJKLM⚪⌱C1.(ᳮ(13))(S-ᓽḄQRSTUḄVᦪX6D(xY-y6)4=/y2-4/y5+6%3y3+…ᦑVᦪX62.(ᳮ(14))`aᦪᑡஹḄc஻⚗e^sn9f%=5%U⎃B9S5C%=q+4d%=+2da5=5a3,ᑣ%+4d=5q+10J40

40ভ+lm♦5=53+᝞=o,ᦑ⎃=9஺ᡈrUs1,222S§a4=3,a5=5ᦪᑡc9⚗X-3,-1,1,3,5,7,9,11,13,S5=5,S9=45,tX9.3.uᳮu15mm0Avᳫ஺Ḅxyzv0AḄT{M}70Aᡂ45஺Ḅ☢ᳫ஺Ḅ⊤☢ᑮᙊc,fᙊcḄ☢`ᑣᳫ஺Ḅ4⊤☢`CD᝞DᙊCḄᙊUXD,xyXr=80,|`.a=Lba=LᳫxyXR,ᵫᳫUe☢UỾᔁqᚖ☢0mw,⚪°1V2V20M=-R90D=—0M=—RᦑR2=Rm2+d,ZR2=NR2=2,ᳫ⊤☢XS=4ᡂ2=84844.ᳮu16mm4C,60Xᙊ0Dx2+y2=4Ḅᩩ?ᚖḄᚖXMu1,V2mᑣ¡¢ABCDḄ☢Ḅᨬᜧ¥X5CD¡¢☢¦B0OBC

41S^-BDxAM+-BDXMC22^-BDxAC2ᓽ§ACxBDᨬᜧ¥E,©ᑖ«XAC,BOTᑣᨵOE2+0F2=0M2=39OE2+AE2=4OF2+5F2=4(]OE2+0F2+AE2+BF2=8,AE2+BF2=5S=-BDxAC<-(BD2+AC2)=-(4BF2+4AE2)=5-244¯°s.E,©ᑖ«XAC,“TS^^BDXAC<^BD2+AC2)`SᡂoAC=8O=0E="U!|OEMFX´¯¢.OM=439OF=0Msin45°=µ72AE?=8/2=R2B஺/2=9AE2+BF2=5252=5ᡠ+Um·©+4¸m=5.5.uᦻu13mm`tᦪᑡ¹ºḄc஻⚗e^s“,Pc=1$=4S?,ᑣ%=3CD»XOi(i-Q_]q('53="sU=¼9\-ql-qs=4s36!jl-q=4Q_q3m,¿I1+/=4,q3=3,ᡠ%=஻À3=3.6.uᦻu15mmᵫIᙊ஺DÁÂ5eA1ফ,ᑣ{A}7ᙊ஺?ᑗḄ17ᙶ᪗ÆÇᡂḄ2¢Ḅ☢`È442

42CD»XᙊḄᑗ1ᚖ{ᑗḄxyÉ1஺4ḄÊ᳛Uᑗ1Ê᳛Ì.&ᑗ1¯Íy-2=B9B1%s°%=5Î=°x=52015u25S=-x—x5=——224u2mCÏÐÑ⚪u1m2ÒᦪÓ2011IÔ17⚪uÕ·⚪Öᑖ10ᑖm\ABCḄᑁÂ5ஹCḄ¡ᑖ«XÂÂcoA-C=909a+c=42bCoC°1Dᵫ´ØᳮÙs4s£ÛsinAsinBsineᩩÜ…sÝ஺sinA+sinC=V2sinBÞA+B+C=180°,A-C=90°ᑣcosC+sinC=V2sin(A+C)V2sin(90°+2C)-x/2cos2C43

43v—cosC+---sinC=cos2c22cos(45°-C)=cos2C»0°

44nsin2B-2sinAsinCᡠßcosB=------------------------2sinAsinC_cos22C-sin2Csin2C1-sin22C-sin2Csin2Cv2sin22C+sin2C-1=0ᵫãCsin2C=&ᡈᒃiO=-1Þ0<2C<90஺ᡠß2c=30஺,C=15஺2011IᦻåÔ18⚪uÕ·⚪Öᑖ12ᑖmḄᑁÂ5ஹCḄ¡ᑖ«XÂÂ஺sinA+csinC-yjlasinC=Z?sinBo(I)§8&(IDfA=75",b=29§aஹco(I)C°1DasinA+csinC—\[2asinC=Z?sinBᵫ´ØᳮWe?.æC=஻ᵫâØᳮb2=a2+c2-2accosBᦑCOSB=¥Þᵫ0°

45C°2asinA+csinC-41asinC=bsinB,ᵫ´Øᳮsin2A+sin2C-V2sinAsinC=sin2B=>sin2A+sin2C-V2sinAsinC=sin2(A+C)=sin2A(l-cos2C)+sin2C(l-cos2A)-V2sinAsinC=2sinAcosCcosAsinC=>2sin2Asin2C=V2sinAsinC4-2sinAcosCcocAsinC=>2sinAsinC=V2+2cosAcosCy/2V2cos(A+C)=------cosB——22n/6=45°.(IDC°1•.•A=75°sinA=sin(30°+45°)=sin30°cos450+cos30"sin45°_V2+V6—4ᦑ""জ"¹"Li+6,sin8<2,sinCc=hx---sinBcsin60°=2x--------sin45°46

46C°2D{céCDVAB஺♦AC=2,NA=75°•cn”..oV2+V6d+e..CD=ACxsin75=2x----------=-----------42஺=௃=¹*ë=1+6sin452c=AD+DB=ACxcos75°+CDV6-V2y/2+y/6rr=2x----------+-----------=76423ஹᦻᳮåu2010IÔ17⚪m\ABCTDX¡BCḄBBD=33,sinB=A,cosZADC=1§AD.C°BDᵫcos/AZ)C=g>0ᵫcos8=/sinZAOCìÉsinABAD=sin(Z4OC-B)=sinZADCcosB-cosZADCsinB4123533—x-------x——=—51351365ᵫ´ØᳮADBDsinBsin/BADᡠß4ÂBD-sinB"sinABAD47

47”533x—13=25.3365C°᝞ᵫcosZADC=|>05xZADCX┦.B33D3xHCéAH1DCH.ᙠRIYADHTO"=3x,ᑣAH=4x9AD=5x•ᙠRtAABHT9f,ìÉcosB=,4xtanB=—1233+3xCx=5,ìÉAD=5x=25•C°2:^3cosZADC=(>0cosNADB=cos(^-ZADC)=-cosZADC=—|ð4EAABDcosB=—jsin4ADB135••sin/BAD=sin(B+ZADB)sinBcosZ.ADB+cosBsinZ.ADB5124=Vxd----x—131353365ßñòC°1.48

484.ᳮu09IÔ17⚪muÕ·⚪Öᑖ12ᑖmMBCḄᑁÂ6ஹCḄ¡óᑖ«XÂÂC2cos(A-C)+cos5=g,b=acjB•C°cos(71-C)+cosB=3Û5=)B(4+C)i^3cos(A-C)-cos(A+C)=—3cosAcosC+sinAsinC-(cosAcosC-sinAsinC)=—3sinAsinC=—4ÞᵫUôÛ´Øᳮsin2B=sinAsinCᦑsin2B=-4sinB=*ᡈsinB=—g(àá)vB=?ᡈB<Þᵫb2-acb

49(3cos(%-B)-l--cosB234/.sinB=±§J3J5e(0,4)•öᡈ·÷8=øù…}…ᦑ஻>ac7úû஺(2)ᦪᑡÓ1ஹ2011IÔ20⚪(Õ·⚪Öᑖ12ᑖ)ᦪᑡüÖi}ýþᔣ…1%(I)ಘḄ⚗(II)“᳛,S—X<1஺7஻k=\(I)!"!Lᵫ⚪1-%+i1-%ᓽ'()1Ḅ+(ᦪᑡ.50

50ᦑq=1+2஻1•1=஻•1-4ᡠ6n!2"ᵫ⚪J—1-%+l1-an89:ᓽ3;=|.=>?=@.nᵨᦪBCD!"1°F஻=1i=0,ᡂH.2°ᎷF…JᡂHᓽkᑣF"A+1J---=—^ߟ+1=ߟ5—+l=k+\f1-4+11-%1k-1kᡠ6᝞.MNᡂH.K+1OP=Q51

51!3"ᵫ⚪STUᨵ1஺“1-0,4-an-2----------=11—%11%PZ[:T-^=”1.\_%\/3^%=0,—=nl~anᡠ6n!4"ᵫ⚪:bᓝ௃i-j\%ᨵ-~--(W+1)=—-Z2.1-%+11-an-----n=-~!------(«-1)=...=—i----1.14"1-an-\I.%4=0,----஻=0.ᡠ6mJ.n52

521_,1(II)ᵫপ:a=1J%Jᓝ“+]>Jn

53_y/n+l-V»y/n+l-Vn114nJ"+1=1——]<1•Nn+12ஹ2011xᦻz17⚪2|}⚪~ᑖ10ᑖ+ᦪᑡ%Ḅ஻⚗)S.…,6%+஺3=30aSnon!1"4Ḅ)qaq=6V{6%+qq230"3ᡈ:2""32q2Fq=3=2Ja„=3x2--1,S„=3x(2n-l)aτ=2,q=3Ja“=2x3"T,S“=3“_]!2"53

54a1%=366%+%=30:6=2ᡈ3Ḅ=18ᡈ12q=3ᡈ2F—J4=2x3"T,S”=3"-1F%=3,q=2J«„=3x2n-',5„=3x(2fl-l)3ஹᳮz(2010x18⚪)ᦪᑡ%Ḅn⚗s“=(-(I)…sn(II)"4+++3஻.I222n2!"(I)lim—=lim——஻00S00Ss=lim(l--…snq=l-lim…500S஻+133nᡠ6=|00S3n(II)F஻=1Ja,=S,=63F஻ு1J54

55+I222n211ஹ஻11ஹ°11r—;-----7)•5]+(ߟ---7)•H-------1-[-------¤----7l2222232-(n-1)2n2S.2n+஻-3">3"n2ᡠ6Fᙠ1J*+¨++2>3”.r2-nz!b"(I)%=S“-S,T=(஻2+஻>3"-(஻2஻>3"T=(2/+4஻>3"T=2஻(஻+2)3'T(n>2)(2஻2+4஻).3"Tlim—lim”T8SM—>00(Ḇ+஻>3"2n2+4஻-lim23"T8n+஻23(IDdxCl-)ClClτa2-1J2-+-c12+---+—2->—«2+—++22¬®ᨵ+¯ᡷᑖ12nnnn55

56a+a+---+aSt2nn^-----(n2+n)3"^1„„(1+)3>3rTn(ID!²:%tzaa,a,a„a+aH----\-aT+?+…+n>12nJ+2—+…+·”12-n஻+஻n+n஻~+஻n2+n(Y+஻)3஻=¹º34ஹᦻz(2010x18⚪)»'ᔜ⚗ᙳ)¾ᦪḄ+ᦪᑡ¿C/11ஹ/“111ஹQ]+-2(---1---),%+%+஺5=64(---1----1---)•aa'aaak2345(I)ÂḄ⚗(ID/ºmÃ2,ÄÅÃḄn⚗}%(I)!")qᑣ…-(11)a+aq-2+——lxg%q)ᵫᨵ11aq~+Q/+஺Æ4_64}---T2----3THᶌτ%q%qaqJ}2ᓄÉ).%q226=64«iqÊË^q>0,ᦑq=2,q=1ᡠ6a.=2i!b"%+32Ì+••a}a2=2aI"1256

57•%+஺4+஺5=64(--H----1---)%஺4a5ᑖᵫ••aa=6435)q(<7>0),✌⚗)%•=2••

582IIᦪᑡÃḄ⚗."2Iᵫ6+=S?=4஺]+2:=3%+2=5ᦑ4=Õ—2cli=3Ê4+2=S“+2-S,Ö=24஺Ḅ+2—24%+2=4%+1-4×Ø'%+2-2-=22an+1-2%,ᓽbn+l=2b„.h'✌⚗)3,)2Ḅ+ᦪᑡ2Hᵫ2I+ᦪᑡÃÙÚf%+i_3•••--2%=3X2"T,Ø'2“+12"-4..Û'✌⚗)()[Ḅ+(ᦪᑡ—=-+(«-l)x—=—n-—2"2'7444a“=(3“_l)x2"<6ஹᦻ(09x17⚪)(|}⚪~ᑖ10ᑖ)+(ᦪᑡ{"Ùa3al--16,a4+a6-0,{/஻⚗S..!"Ã}Ḅ()“ᑣ(4+2d)(%+6d)=-1

59ᡠ6sn=-8஻+n(n-1)=n(n-9)ᡈsn=Sn-n(n-1)=-n(n-9)!b"Ë)Ã)+(ᦪᑡᨵ%+4=%+%ᡠ6%+%=0a3a7=-16a=4:3ᡈàb6Z=-4%=47Ḅ()“ᑣâ%+ãᡈ\6/j+2d-—4a+6d=-44+6d=41:äᡈäᡠ6sn=-8஻+஻2஻-1=஻2஻-9ᡈsn=8/2-opo-1=-nqn-9å⚪æᯠᙠè⚪Ùᵨᑮ+ᦪᑡ2êÂèᦪᡈèë஻ḄìᦪḄíî,Êᵨᑮ+(ᦪᑡ2Â◀6èᦪᡈë஻ḄìᦪḄíî,ðñ9òóᩖ,õᙳᑖö[2-3ᑖ஺ᦻz÷Ḅᦪᑡ⚪ᩞùxúûüZFúýþ஺2²Hÿ1ஹ201119⚪⚪ᑖ12ᑖ᝞┵S-ABCOAB//CD9BC1CD9☢SAB!"#$%AB=BC=2,CO=SO=1SI()*SO_L-☢SAB.ID012-☢SBCᡠᡂḄ$Ḅᜧ;DC59AB

60I891*s:;£=>᝞.ᑣ"%@᝞A%ᳮ⎃Dᵱ:DE=CB=2.GJB19-1=>Iᑣ■1KSE=n.rSD=\,ᦑḄMN+PᡠQ/ST$.ᵫ48YABA.SE,DECSE=E,Z-☢SDEஹᡠQ1Iᓽ2\ᩩ1^T_4`abᚖT.ᡠQd-☢SAB.892*:;£=>eSE᝞19-1,ᑣ"%g᝞A%ABLDE,hij!"#$%ABLSE,hᵫkn•ME,Z2`L-☢nr•[ABu-☢SAB.[.-☢o-☢2p.60

61,:DE=CB=2ஹSEfSD=1,=SELSD,V-☢SABA-☢SDE=SE,SDu-☢SDEᡠQ-☢SAB.893*VAB஻CD,BCCD,Mst%GuvT$w%:;x=>y/z{2),19-2nDE=CB=2,AE=1,=>AD-V5,hVZkSu!"#$%SA=AB=2,SD=\,ᦑN=P+^ᡠQNDS4T$.nSDLSA.=>DBஹ0DBM5=NMN+ᡠQN9T$.=>SDLSA.hASQBS=S,ASc-☢SAB,61

62BSu-☢SAB,ᡠQP_1_-☢SAB.ID89Lᵫ_1-☢SDE☢SDE.‷SFDE,ᚖF,ᑣSF-☢ABCD,SF=SDXSE=MDE2,FGBC,ᚖG,᝞19-4JFG=DC=1.=>SG,ᑣSGBC.BC1FG,SGCFG=GஹᦑBCJ_-☢SFG,-☢SBC-☢SFG.FHSG,஻ᚖᑣ⊈L-☢□M4Mᓽᑮ-☢ḈḄSG<7ᵫᓽ஻BC,ᡠQᑗ஻-☢.62

63Eᑮ-☢ḈḄd."2-☢ḈᡠᡂḄ$a,ᑣsina=±=᧧a=arcsin.EB77892*VDC஻AB,h48u-☢SAB,nDC஻-☢SAB,=஻;ᑮ-☢BḄM!஺;ᑮ-☢SABḄ;Aᑮ-☢SBCḄh,ᵫ¢“keZ2=>V3-1=--V2■h22V3=>hAB2-☢SBCᡠᡂ$aḄ¥¦§sina-hASᑣsinag¨V21a=arcsin-----•763

64893*-☢᱐7Ḅ9ᔣ¬:M(m,n,p),_Lal.CB92•BS=0a•CB=0ffᨵPM(1,*),ᨵM(0,2,0),47f3g±ᦑr஻-a஻+3P=஺2n=0:᜛M2Za—(—73,0,2).shµ=(-2,0,0),COSீµ.·M¸,Mᳮ.\/|AB|-|a|A/EB_/19-5ᦑAB2-☢SBCᡠᡂḄ$arcsin».72ஹᦻᳮ½(2010¾19⚪)᝞T#¿A8C—ACMBC,AA=A8,D)Ḅ;EAᵨÂḄÃ;,AE=3EBI,(I)()*DEÄ☢64

65T_”2CDḄÇᚖ_.(II)Ä☢T_ᱥ2CDḄᜳ$45஺0M☢$J41—J4C|-5|Ḅᜧ.(I)89Ã*=>4ÊA௃BXḄ^;*E⎅☢A4Ë3¥%ᦑ4ÌÍÎÏzAF=FR.rAE=3E{,ᡠ}^h஻■Ḅ;A%"ஹ'ஹᦑDE”BF,DEVAB,,ÐCGLAftGᚖᵫ47MᕒG4*;.cjhᵫÖ☢☢AA18B,ZAA.1B,/ஹ?--/-JBi>=>஻G,lG஻G஻2A,ᦑDELDG,s“‘ᵫ#ᚖ_ÚᳮDEIQ).xᡠQpÄ☢T_ᙌ2ᑗḄÇᚖ_.89M*Q8ᙶ᪗Þ;ß_àxâ¥ãâeä᝞ᡠåḄæçT$ᙶ᪗èB-xyz.(᝞éêeä¥ëḄᙶ᪗èì☢íᨵᐸïZᑖ;ᑣ65

66eäḄ¥ëᙶ᪗èð1ᑖ)M2,ᑣ4(2,0,0),5(0,2,0),஻(0,1,0),E(1,1,0)hC(l,0,c),ᑣ9M(1,10),B(2,—2,0),Dc~(1,-1l\\G)ñ9B/M0,=>RA1DEBi=>CDDEyDEDC—0,ᡠQpÄ☢T_4x2C___89#.eä᝞ᡠåḄæçTòAஹè஺-xyz.A஺48Ḅ;X|”|M|A4i|=2a,\OC\=clG4(a,0,0),B(-a,0,0),Bi(—a,2a,0),D(—a,a,0),oo£J1a3ao-122z11反Tz2rr-(aaoA-(a\--x2266

675,0)DC—(5,—a,c)*•*fDE*B~A=0.*•DE-LBA=BiA_L]DEDE*5c—0DEA.DC=CD_LDEᡠQQÄ☢T_ᙌ2ᑗḄÇᚖ_.(ôõ᝞ö||M|=2a,|BC\=cᑣ஺(0,0,)22DC—(a,-a,Vc-a))(II)89ÃP஻□ᦑNGÄ☢T_2஻CD÷øḄᜳ$ACDG=45°.M2,(J25M2᫣,*A|CG—V2,AC—V3Ð4G,HᚖÖ☢A\B]_C\J_☢AA\C\C,ᦑx_L☢41GChÐI4G,ùᚖ=>tú67

68ᵫ#ᚖ_ÚᳮBiK±AQ,ûN5NM☢$4Ã4G-3Ḅ-☢$&MAேgx,A|C—(J?A[B])2_2724GV3HCi-JBC[-8ᵨ2=g,4G=■+(ᡃ2HK=AA|X஻a=2A/3AG377'tan5KHM◤ᡠߟ^☢4—AC\—BiḄᜧarctanVu.ீKᑗḄᜳ,ᦑ•ᓽ2#xx=4,&c5ᦑ'()1,0,,)0AA,-B,B=(0,2,0),68

69ᡠZ='+ᯠ=(-1,2,ಘ56☢441GḄᔣ9W(x,y,z),;•Ic.=0,«•M=0,ᓽ-x+2y+&z=0C2y=0x⚪;=(p,q,r),ᑣ>•H0,>•I0,ᓽ-p+2q+3r=0,24)2q=0,Lp=,;U°Or=-1,ᦑn=(V2,O—1),ᡠcosR>,>S='I/nIInIJ15ᵫVnWV☢Al-AG-BiḄ6☢ᡠ—^☢4-ACi—BiḄᜧarccosX15YZ4[NGV஻528=441=2,69

70=AC-BC,ACi=V7=Z(2,0,0),3(0,2,0),஻(0,1,0),£(g,I0),G(1,2,b)C(1,0,ಘ4(2,2,0)5W6☢ARCḄ)eᔣ9nn—(V2,V2,-1)5e☢4-4G-gḄ6☢ᑣsin3τ-MA௃I—J210I«|-|MA,I15ᡠ☢Ai-AG-ByḄᜧarcsini.15jজᑭᵨᔣ9Ḅᔣ9no6☢28GḄ)eᔣ9pAB—(—2,2,0),AC,—(ߟ1,2972)170

71>=AB]XAC=-220—(2V2,2V2,—2)-12V2o6☢441GḄ)eᔣ9tAG=(0,2,0)Ac=(ߟ192,tm=AA,XAC=020—(272,0,2)t-12V2ঝarcsinW=arccosi=arc15tanVu3ஹᳮ(09{|18⚪)(~⚪ᑖ12ᑖ)᝞,YABC—AB1AC90ஹEᑖஹᵨCḄDEL6☢BCC,(I)"=AC>Jp5|A-BD-C6஺஺og6☢,68ᡂḄℍḄᜧ(I)1B,NTEPᑣEF£>8,ᑣ//OA//%'>,3cAYᑣ,6¡'AF//DErDE6☢BCC9ᦑAF16☢BCCt}71

72AC6C,ᓽAF8cḄᚖ6ᑖ¤ᡠAB=AC.2.ᙶ᪗§¨¤©ª«᝞ᡠ¬Ḅᙶ᪗4)®58(a,0,0),C(0,b,0)9£>(0,0,c);(JB](a,0,2c),f(p|,c),V´⁰(?0),BC=(-a,b,0)ᵫDE1.6☢BCG·DE1BC9;(JDE*BC=09o&,TᡠAB=AC(II)56☢BCDḄᔣ9AN=(x,y,z);(J¹4.1º=0,AN-BD=093^-BC=(-a,a,0),BD=(-a,0,c),ᦑ/)᝖+ay=01-ox+cz=0Lx=l,ᑣy=l,z=-9A=(1,1,⁐)cc06☢ABDḄᔣ9'=9,a,°)ᵫ☢A-BD—C60஺·AN9AC)=60°72

73ᦑ-aANACcos6009o&஺FV´¿(1,19V2),CB[=(a,-a,a)••-->-->IAAN-CB,=2a,ÀI2fIc4I=2a/T--AN-CB,)1cosீAN,CB.~)—-IAN|.|CB,IAN,CB,}60஺ᡠ“6☢88ᡂḄ3஺஺,jজᑭᵨᔣ9Ḅᔣ9no6☢ṺḄ)eᔣ9"£>5=(஻0,—c)9DC=(0,6/,-c)9ijkn-OBXDC—a0-c=(ac,ac,a2)0a-cÃ⚪|)ÄᨬÆᵨÇÈÉ,Êᵨᔣ9ËᦪÉᑣḄᙶ᪗ᨵeÎᦪ,ÏÐÑÒᨵ)ÓÔÕ.|Äᵨᔣ9ËᦪÉÖ×ᓫ,ᵫVᙠÃ⚪Úᔠᑭᵨ¤☢ஹ☢☢W·Ü⚪®ÝÐÞ)ßàᓄᐰḕ6ᙳᑖåæÞ3ᑖçè&jéêẆì஺íîᭆ᳛ñ1ஹ2011{|18⚪í~⚪ᑖ12ᑖî᪷óôÈõöᧇøᙢúûüýᵬÿ◅Ḅᭆ᳛0.5,◅73

74ᵬ◅Ḅᭆ᳛0.3஺ᔜ◅.(I)ᙢ1#$%ᵬஹ'◅(Ḅ1Ḅᭆ᳛)(II)X⊤,ᙢḄ100#(-ᵬஹ'◅.Ḅᦪ஺XḄ01஺23LA⊤,“ᵬ◅”Ḅ788⊤,“◅ᵬ◅”Ḅ78c⊤,“$%ᵬஹ'◅(;◅”Ḅ78஺⊤,“ᵬஹ'◅.”Ḅ78(I)<(JP(A)=0.5,P>=0.3ᦑᡠᭆ᳛AP(C)=P(A+8)=P(A)+P(B)=0.8(II)D=C9P(D)=1-P(C)—0.2ᑣXD5(100,0.2)ᡠE£(%)=100x0.2=20232A(I)(7ᑖ)A⊤,“ᵬ◅”Ḅ786⊤,“◅”Ḅ7874

75

76LRA⊤,~($%ᨵ;glmnᵯkḄ788⊤,ᵯklᙠMxNyzmnḄ78IR23;A-&-4PpA=PLX•.4=P;RPLὡRP4=l-p3=1-0.999=0.001ᦑp=0.923UA4,4,&PLAR=PL4U4UA3R=PA+PpA+PA-PA,A-PAA-P-A+PAA2A32321332=3p-3p+p3=0.99991-p3=0.001ᦑP=0.9II23;":B=A+AAA+AAAA44t34t23pL8R=PpA+4=pL4R+PL4A&R+PLM&AR=PLAJ+pL—RpL4RpL4R+RPLARPL4RPভ=0.9+0.1X0.9x0.9+0.1x0.1x0.9x0.9=0.989123UAPLBR=PLAIA3UA2A3UA4R76

77pLA&+PL&4+P4R-PLAA4R-pLAA4R-PLAAAR+PL4424AJ234=NLRpLA?+PpARPLA,R+pL4R-NL4RpLA2RPLA3R-pL4RpLA3RNLA4R2;NL4PLA3RPLA4R+PLARPLA2RPLA3RPL4R=2x0.92+0.9-3x0.93+0.94=0.989123APAuA2="PA+PA2-PA,A2=0.9+0.9—0.92=0.99A044]=099x0.9=0.891PB=P[A,UAAU4]=0.891+0.9-0.891x0.9=0.98912323:PB=PA,A2A4UA3A4=PA,AAJ+PLᨴR-PAA3aR22=pL4RpL&RPL4R+PL4RPL4R-PLARPL4RPL4RNL4=o,i3+o,i2-o.i4—0.0109PB=1-PpB=1-0.0109=0.9891cm23;A⚪JD54,0.9ᡠE=4x0.9=3.623UA==%}=0.9»0.1…-᝕=0,1,2,3,4ᨴfEE&=£kpk=3.6k=Q77

7801234pk0.00010.00360.04860.29160.656123A4EJ=£kpk=36k=03ஹᳮ(09[\20⚪)(~⚪ᑖ12ᑖ)zᵬᨵ10¡-ᐸ(ᨵ4᝕¡)ᨵ5¡-ᐸ(ᨵ3᝕¡஺ᐜ¤ᵨᑖ¥¦᪵¨3(¥ᑁ¤ᵨª«¬ᓫ®ᓽ¦᪵)°ᵬஹ'(ᐳ¦²3¡³´ᢈ¶ὃ᪶஺(I)°ᵬஹ'g¦²Ḅ¡ᦪ)(II)°ᵬ¦²Ḅ¡(ាᨵ1᝕¡Ḅᭆ᳛)(ID)»¼⊤,¦²Ḅ3¡(ᵱ¡ᦪ,gḄᑖ¿ᑡÁᦪÂ01஺ÃὃÄᫀA(I)ᵫÆᵬᨵ10¡-ᨵ5¡-᪷Èᑖ¥¦᪵Éᳮ-°ᵬஹ'(ᐳ¦²3¡³´ᢈ¶ὃ᪶-ᑣ°ᵬ78

79¦²2¡-¦²1¡஺(II)»A⊤,78A°ᵬḄ¡(ាᨵ1᝕¡-ᑣ~)=Ê*C10(in)4Ḅl²Ì0,L2,3.4⊤,78A°ᵬ¦²Ḅ2¡(ាᨵ-ᵱ¡,[=0,1,2.5⊤,78A°¦²Ḅp1ᵱ¡.A,x8-z=0,l,2.p(g=o)=p(4Ñ)=p(4).p(ᖊ/Ô—Ö=1)=N(44+4×=N(4>p>+N(%)•NÙ)ÚG+-GiG~CL75,NÖ=3)=N(3N(4).N(8)=Þß=àO1P("2)=l-[%=0)+%=1)+%=3)]=஽ᦑJḄᑖ¿ᑡ01236283110P75757575QEJ=0xPå=0)+lxP(g=l)+2xPå=2)+3xP4=3)=|ç;23A(I)ᵬ(¦2¡-(¦179

80.(II)ᡠᭆ᳛P__7^2-77-jT-0,533I஺•ëJ(m)ீḄ²Ì0,1,2,3.P(^=0)=-^--4=—=—=—=—=0.08C.oC)2575225450”.ï+ïïð=ñ=ò=0373C]C)GAC)75225450C)C"CACAC);31.93186P(&==0.413஺C)C(QC)7522545044=-=-=—=—=0.1333)=C.oC'157522545056283110ᡈP(J=3)175-75-75-75,28c31c8360-/E^=Qx—+1x---F2xF3x—=------=1.075757552254ஹᦻL09[\20⚪RL~⚪ᑖ12ᑖRõzöᨵio.........᝕¡)ᨵ10©„ஹ-úü-þu©÷ᵨᑖ¥¦᪵4¥Ḅ᧡ᵨýªᵬஹᐳ4ᢈ᪶஺Iᵬஹ*IJ,MᵬḄᭆ᳛#niḄ4ាᨵ2ᵱḄᭆ᳛஺+,Iᵫ.ᵬஹᔜᨵ101᪷3ᑖ5᪵7ᑣ180

81⌕ᵬஹᐳ41ᑣ:;2#II

824631X-X-X4=--93一2798373348ஹ9975109109101022567520258100z⚪ᩞ}~,ḄᑖM1ᦻᶍᨵ1ᑖ}ᨵᡠ.+᪆1ஹ20n21⚪⚪ᑖ12ᑖ஺bᙶ᪗7¢1£b¤ᙊC,¦1§ᙠyª«¬ªḄᯖ¢1¯Ek±᳛b-²Ḅ³´/eCµ.¦6¢1¢¶·¸+¹+º=0஺I»¼,¢Pᙠc#II<¢Pᐵ.¢஺Ḅ¿À¢bQ1»¼,4ஹFஹ8ஹQ]¢ᙠÂEᙊ஺+,I+0,1ᡈF1,/ḄCÄby--y[lx+1,ÅᐭᡈὶhᓄÉ4/—2²x-1=0ᡈ2”-2y-1=0,8஽,Ì1ᑣb=e]1”el82

83ᵫ⚪Í/=Ea+Ï2=EÐ,%=TH+,2)=-11ᡠÓ¢FḄᙶ᪗bEÔT1ÕÖ1¢FḄᙶ᪗E×.D·CÄÙ=1,ᦑ¢Fᙠ¤ᙊ஺஺II+D1:ᵫp-Ú,-1Û⚪<,஺Ü1PQḄᚖ³Þᑖ´4ḄCÄby=E*%,জ<Ḅ¢báᑣM¥2,]Ḅᚖ³Þᑖ´ḄCÄbä⌨ঝᵫজஹঝஹ஻Ḅµ¢N¥$,|,|V2ஹ2-1ஹ23VHADVZoooëᓾ=-Jl+(-V2)2|x2-x,|=~~~1ð1ñ=ð1M=^I,ᦑ|NP|=|NA|oó|NP|=|NQ|,|NAë”Â1ᡠÓ\NA\=|NP|=\NB\=|7V2|,83

84ᵫô4P,B,0]¢ᙠÓ஻bᙊs,NAb¬õḄᙊ஺+D2,ᵫp-ö-1Û⚪<,஺Ü1<¯4A0R¢ḄᙊCÄbx2+y2+Dx+Ey+F=09ᑣ1也-+一D-E+F=Q221也-+十22O+E+F=0624i.+÷F=o442᦮ᳮú+û244ᡠÓ¯MPஹQR¢ḄᙊCÄb…+ýJ.3=o,442ᡈ᪗þCÄgÿ+=%OOO8ᙶ᪗,1ᙊBᙠ4P,0Ḅᙊᓽ4A"0#ᐳᙊ஺&'3)ᵫpq,-i+⚪-.°*,84

85ᵫ/.A012“Bᱏ,4242ᨵ678?:=;<1,PAPBV33cos(PA,C6)=RMnrIᳮK=_⌭N,01,QB=⌭NO1,cosPṹ=RS=TU\'QAQB11ᡠWcosXY+C0s([:=05L(PA,PB\(QA,QL“(0,1)ᡠWXṹ+\]=],4_"஺#ᐳᙊ஺2ஹᳮa2010bc21⚪ᦻa10bc22⚪_.e᳛g1Ḅhi,0jkiaba>0,&>0nopBஹDrsBDḄgM1,3.IwCḄxy᳛zII-CḄ{⚔gA,{ᯖgF,=)AஹBஹDḄᙊ0X85

86nᑗ.*I,&'Tzᵫ⚪-./Ḅg)y=x+2ᐭCḄᓄᡈὶᓄ(b2-a2)x2-4a2x-4a2-a2b2=0-D(x2,y2)9ᑣ4/4«2+a-b-জ…2=E'—ᵫ1,3gḄ.=1,ᦑ14஺22'b2-a2~ᓽb~=3/ঝc=+♦=2aᡠWCḄxy᳛e=2a&')-8(,ᨴ),D(x2,y2)9ᑣ91=1,জA±&=3ঝA=Iঞ4-4=1টx-xab-}222T&_=Iঠa2b2টTঠ:ঞᐭ)pT=0,জঝᐭab86

87᦮ᳮ)-2ᦑc=4^=2a9ᡠWCḄxy᳛e=2a(II)ᵫ(I)Ḅ&'Tজஹঝ.cḄg)3/_y2=3a24+3஺2¢A(a,O),C(2஺,0)x+x=29xx=-------——<0}2t2ᦑ6£-X|<-a,x2>a¤F|=-2.)2=a_2x,\FD\=^(x-2a)2+y\-2x-a222\BF\=(-Xj+—)e=(T¥+§x2=Q-2%2\FD\=(x——)e=(x-^-)x2=2X-a222\BF\-\FD\=(a-2x)(2x-a)i2=-4XjX+2a(X]+x)-a222—5஻2+4஺+8¨©ªᓺ=17ᦑ5a2+4a+8=17&”]ᡈ(®)ᦑ|°=±_/1=²/(X|+X2)2_4»2=6³´MA,ᑣᵫA(l,0),஻(l,3).\MA\=3,µ¶87

88MAW,sAMx,¸¹WMgᙊyMAgUºḄᙊAஹ6ஹ஺sᙠAᜐ0xnᑗ஺ᡠWAஹ¼஺Ḅᙊ0xnᑗ஺3ஹᦻᳮ(09bc21⚪)_.¾ᙊc:ᓾᓾ”À஺)Ḅxy᳛gab,{ᯖCḄhiL0Cnop¢6rÂLḄe᳛g1Ãᙶ᪗Ä஺ᑮLḄÆxgÇ.(I)w஺ÈḄÉz(II)CÊᔲÌᙠP,ÍÂLÎCÏᑮÐTÑÒÃᨵÓ¶¶ᡂ2ÕÌᙠ,wÖᡠᨵḄPḄᙶ᪗0LḄzÕ6Ìᙠ,×ᳮᵫ.&'T)(I)-F(%஺),ÂLḄe᳛g1Ãᐸgx-y-c=0,஺ᑮLḄÆxg¹Û%,ᦑ%=*,Ý.y/2A/2V2288

89ᵫ6=£=3^,=4^9b=y/l•ci3(IDCÌᙠP,ÍÂLÎCÏᑮÐÑÒÃᨵ¶à+¶ᡂ.ᵫ(I).cḄg2x2+3y2=6-A(x”%)B(x2,y2).(i)ÂL6ᚖhpXÃ-LḄgy=k(x-l)•cḄPͶ=ã+¶ᡂḄᐙᑖæ⌕ᩩéÊPḄᙶ᪗g(X]+ê2,æ+ë)s2(x+x)2+3(%+gf=6t2᦮ᳮ2xJ+3yz+2/2+3g2+4%jX2+6ᨴg=6¨¢8ᙠCᓽ2%/+3y/=6921+3g2=6ᦑ2XX+3æï+3=஺জ}2y=/:(%-l)'f^^.2x2+3V=6ᓄ/(2+3%2)-6ᐭ+3k2-6=0pÊó3P-69X/2'22+3/2+3/,-4k,2ᨴÂ=-(¥T1)(஽-1)=T-T7TNᓝJKᐭজ&/=2,÷¢=±ù¹Ãú+஽1pÊ%+g=&(□+x-2)=--19ᓽ2ü-ý89

90ÂyþÃP|,TÿLḄ41x+y-V2=05k=pg,LḄ_y_0=O.iiLᚖᵫ3+ᔊ=2,0,cᙠ=3+ᡂ!.#cᙠpg,±*=3+ᡂ!'LḄ()y-*=0+,-.I03LḄ1᳛1ᐸx-y-c^0f஺ᑮLḄ7859=;ᦑὅ=c=l.4V2V22ᵫe---—,@a=6,b=7«2-c2=V2.a3IICᙠA@LBFCᑮDEFᨵ=d+ᡂ!.ᵫIcḄ2x2+3y2=6.40|,1,8.H2H2iLᚖX0LḄy=%ᑍ1.cḄP=3+ᡂ!ḄᐙᑖN⌕ᩩQRPḄᙶ᪗ᓛ+X2%+%•Vy-Wᐭ2x2+3/=6,Yᓄ[@(2+31)/-6k2x+3k?-6=0.90

91-4kR21+2»_2+319H+`=2+3k2ᓽᘊH,cpᙠcᦑ2*+3d26ᓄ[@ᯠ4-4f2_4=0,+@g=2,hiJk=)l.m⊈P*|,oLḄy[ix+y-V2=0pqrP|¥,LḄḄ(-y-V2=0.iiLᚖxᵫ3+=2,0CᙠP,=}+~ᡂ!.#cᙠP|,)=E+ᡂ!'LḄ)=0.⚪[ᓫ-ᜧ,ᓄ[ᩖ᪗+C஺-+,[ᓫᜧᐰḕᑖ¡ᨵ150f¢@£ᑖᐰḕ¤ᙳᑖᶍᨵ§¨஺+᪆ª«R⚪ᒹ⌱¯⚪°±⚪஺ᦪ³´Ḅᙠ'☢¶¡·¸¹஺ºḄ»³⌕¼@½ᑖᑖ஺¾¿ᦪÀ91

921ஹ2011Â22⚪(Äg⚪£ᑖ12ᑖ)(I)0¿ᦪ/(x)=ln(l+x)-Åmுx+20/(x)>0p(II)ÉÊË1ᑮ100Ḅ100ÌᓱᱏÏÐÑÒÓÔÕÌᯠÖ×ØᵨÚÛÜÝÔÕ20Ñ0Ô@Ḅ20ÞËṹà⊡â»Ḅᭆ᳛P஺äå.(Q19<^+.(1)ஹ/(x)=-----------——r(X+1)(X+2)2x>0,/,U)>0,ᡠë/짿ᦪcí/(0)=0ᡠëx>0/(x)>0ফஹp100x99x---x811OO20c99x81<9()2,98x82<9()2,…,91x89<9()2ᡠë”ெ—ᵫ(1):x>0ln(l+x)>.2ó.,x+2í'(l+-)ln(l+x)>2XᙠÛÏôᑣö÷ு2,ᓽᵫp292

93ᡠë”ø஽(1)Ḅ-+,.⌕äx>0/(x)=ln(l+x)--^->0,úäx+22xln(l+x)>9ûüú◤äå(%+2)ln(l+x)-2x>0•x+2g(x)=(x+2)ln(l+x)-2x9hg(x)=ln(l+x)———1+xþôh(x)=g(x)=ln(l+x)---,hh(x)=——---l+x(1+x)ᡠëx>0/(x)>0,ᦑl>0F/i(x)R§¿ᦪc஻(0)=0ᡠxு0g(x)=h(x)>஻(0)=0,BPYln(l+x)-------->01+xᡠx>0g(x)ᦪg(0)=0xு0g(x)>g(0)=0ᓽ(x+2)ln(l+x)—2x>0ᵫxு0/(x)>0(2)Ḅ100x99x---x81P_WO3599x81<9()2,98x82<90:…,91x89<9()2ᡠ”ᑴᵫ/()=#~———T9ᡠX>—1/(X)>0,(x+l)(x+2)93

94x>T,)*+ᦪ,᧡,ᑣ192//00*=ln—+—101019+/.*

950s☢abA(0,/(0),B(2,2)Ḅz\Ḅ{᳛+AB0-2-2}0s☢[\y"পᙠbAᜐḄᑗ\{᳛+⚪=((஺)=3-6஺.,.Ḅ8=kᑗᓽ~Z[\y“ᙠx=஺ᜐḄᑗ\ab(2,2)(2)(6ᑖ)1f\x)-0,fF+2ax+1-2a=0(i)-ᔣ))ᨵ᩽)H(ii)ᵫ⚪a>41-10'f,\<-a+7a2+2a-\<3a<-V2-11<_ci+Ja2+2a—1<3f2ᔠ(i)(ii)faḄeHkT.GD(2)(6ᑖ)2ᵫ0ᐗᦪḄᱯឋ⚪stv(x)=0ᨵ᪷஺ᦑx2+2ax+1-2a=0Ḅᑨ=4a2-4(l-2a)>095

96ct~+2a-1>0fci<—V2-—1RXo=x2/(x)=0ᨵ᩽)HbfXg=-ci+Ja+2a-10(2)(6ᑖ)3ᵫ⚪জstrx)=0ᨵ᪷ᑨ>()a<--ு,\/2-1ঝX஺᪷ᜧḄ¢Xoe(1,3)ব>05CL>----2ᵫ/Uo)=o=>a=-TUo-1)+--~7+22|_x-10xG(1,3)x>100.■.a<-^(2V2+2)=-(V2+l)=-V2-l¤aḄeHk(ߟ|,0§01)3ஹᳮM(2010K22⚪)ᦪ/(x)=l—e*.(I)YZx>-1y(x)2¤#X+196

97(II)x20ax+1i஺ḄeHk.(I)0©”ª«¬x+1ex>\+x,g(x)=e-x-l,ᑣg(x)=e-ixNOg(x)NO,g(x)ᙠ[0,+oo)ᦪx40gீx”0,g(x)ᙠ(fO]´ᦪg(x)ᙠx=0ᜐµᑮᨬ)HBxeRg(x)2g(0)=0,BPex>\+x,xு—l/W>^•.>T3½("(2=஺+1)(1_À_20,g(X)=(X+1)(10-X=1-X"ஹ-""ᑣg\x)-e~x+xe~x+e~x=Ág(x)ᙠ(-1,0]´ᦪg(x)ᙠ[0,+oo)ᦪᦑg(x)2g(0)=0X••/(x)-77T(IDᵫ⚪xZO,/(x)>097

98a<0cx>Äᑣ0^<0,/(x)W—ᡂÆaax+1ax+la>0,h[x}=afit{x)+f(x)-x9ᑣ/a)w0«¬ft(x)<0ax+1h'(x)=af(x)+axf'(x)+=af(x)-axf(,x)+ax-f(x)(z)0yᵫ(z)x>/(x)/?/(x)=af(x)-axf{x}-\-ax-f(x)Na")-a%)+afx)-f(x)=(2a-I-ax)f(x)00a[.h(x)>h(Q)=Q9ᓽ/(x)>Ä0ax+i¤”ḄeHk4ஹᦻM(2010K21⚪)Rᦪ/(x)=x3-3ax2+3x+1•

99(I)”2,i©)ḄᓫÈÉÊ;(II)/ÌᙠÉÊ(2,3)ÍÎᨵ0᩽Hbi”ḄeHk.(I)”2/(x)=3x2-12x+3(ᙠ½ᦪÏÐ/Ìஹ3/ஹ0ফஹ3Ò⚗⚗ÔÕÖ1ᑖ┯2⚗ᡈ2⚗¤Öᑖ)/'(X)=3(x—2+V3)(x-2-V3)(ᡈf(x)=Ox=2--\/3,]x=2+V3)2xe(—oo,20ম,/W>0/(x)ᙠ",20যᓫxe(2-Ý2+Þ9/W<09/(x)ᙠ(2—62+মᓫ´€(2+Ý+8)/1(X)>0,/(x)ᙠxe(2+g,+oo)ᓫ¤áḆãäå/পÏÐzæÖçèᔠéᡷ1ᑖ஺(II)/'(x)=3[(x-a)2+1-02]1-Äë0f,(x)NO,ᦑ/(x)ì᩽Hb஺j2<0f(x)=oᨵ᪷஺x=a—yja2-19x=a+Xa2-1(îᑏ/,ᡷᑖ){2ᵫ⚪ð2

100ᦪ/(x)=x¥-rlrln(lX)ᨵ᩽Hb……õ.X]01,,,/ஹ2x2+2x4-6/f(x)\=+-x---------«üপ=஺ᨵḄ᪷3,ᦑ2x2+2x+a-஺Ḅᑨ=408a>0MPa0.aḄeHkᔩ).xᓄ/পḄᓄ᝞⊤X(-1,X])(x2,+oo)BGx)\D]D2/x2/'(X)+0—0+/(X)7᩽ᜧ"X᩽#"7$%#)ᙠ'(()*(+,+8)-./ᦪᙠ'(100

101aಘ-2/ᦪ.(II)34)ᵫ⚪*জB-20,ᦑg(f)ᙠ'([:-./ᦪ.;-il-21n2£(-gNg(f)ுg4$%f(x)=g(x2)>12ߟ1+Jl-2a34PB24G,—ஹ/ஹ/-1+Jl-2a2]/[-1+Jl-2஻I/(஽)=g(஻)=(-----------)+aln(l+------------)1+Jl—2aஹag'(a)=+௃n()-Vl-2«(l+71-2a),/]+Jl-2a=ln(---------)11+71-2a,$0g(H)=L2101

1026ஹᦻ(09cd21⚪)?/ভ=1%3-(1+a)x2+4ax+24a,ᐸhiᦪaுl.(I)kl஻Ḅᓫ\ឋ;(II)o"0—>஺ឤᡂt,u•Ḅw"y.3(I)/'(X)=x2-2(1+a)x+4஻=(x-2)(x-2a)ᵫaுlBx<2/(x)>0,/(x)ᙠ(-8,2)z-./ᦪH22a/'(x)>0J(x)ᙠ(2a,+8)z-./ᦪH{za>1/(x)ᙠ(—8,2)(2a,+8)z-./ᦪᙠ(2,2a)z-2/ᦪ.(II)ᵫ(DB/(}ᙠ~=஺ᡈx=2aᜐwᨬ#"./(2஺)=-#+4஺2+244,/(O)=24aa>1ᵫ⚪?B/(2a)>0/(0)>0a>1ᓽ-y6Z3+4Q2+24஺>0‘324a>0ᳮ⚪hḄd)ᓫ,kl᦮,dPᨵᓄ஽Ḅ/ᦪ,z-ᨬ)⚪Ḅ஺ᦻ⚪102

103¡klᐰ஺£ஹ¤¥¦§(1)\᦮¨©ᳮª᝱¬®¯Z°¨©᝱ஹ±²©᝱³⌕µ¶·¸ᒹº»¼☢¾¿ὃ஺ᐶÂஹÃÄஹÅᢝ)ᑗḆᨵÉÊËÌ-⌕☠Î⌼*ÐwḄ஺(2)Ñ¿ÒẠBÔÕÖ×Ḅʶ{ᔠᑖ᪆Ḅʶẚ3⚪ÜḄʶÝÞᓄḄʶᮣàáḄʶ⚜ãäåḄʶ,ᔠᳮæ᣸(Ḅʶ\᦮©᝱ḄʶZᔜéBÔÕêᡂëëëìíîᡂ☢☢☢᪀ᡂBÔðñ{ᔠáᵨóô⊡ö÷ὃøcὃ⚪ùúû⚪ÜüýþᩭḄ஺(3)⚪᣸⌱⚪ஹ⚪ᑴᙠ60ᑖ#$ᑁ&'(⚪)⚪10ᑖ#+,஺(4)$.ὃ⚪01⚞345678✌⌱:;<Ḅ.ὃ=⚪$ὃ⚪>?@AẆCDEFGHI@JKᧇMḄ⚪NOPQRḄSTUᑖVW7X&ᫀ஺[\103

104]^_`abcd⌼᜻g஺+,hiᡊkhilm.ὃd⌼nᩭ஺pqᔳskᑭuvwhis104

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭