L-苯丙氨酸的氨基功能化γ...2O_3磁固相萃取(英文)_秦铭杉

L-苯丙氨酸的氨基功能化γ...2O_3磁固相萃取(英文)_秦铭杉

ID:83271665

大小:1.25 MB

页数:10页

时间:2023-07-06

上传者:139****0482
L-苯丙氨酸的氨基功能化γ...2O_3磁固相萃取(英文)_秦铭杉_第1页
L-苯丙氨酸的氨基功能化γ...2O_3磁固相萃取(英文)_秦铭杉_第2页
L-苯丙氨酸的氨基功能化γ...2O_3磁固相萃取(英文)_秦铭杉_第3页
L-苯丙氨酸的氨基功能化γ...2O_3磁固相萃取(英文)_秦铭杉_第4页
L-苯丙氨酸的氨基功能化γ...2O_3磁固相萃取(英文)_秦铭杉_第5页
L-苯丙氨酸的氨基功能化γ...2O_3磁固相萃取(英文)_秦铭杉_第6页
L-苯丙氨酸的氨基功能化γ...2O_3磁固相萃取(英文)_秦铭杉_第7页
L-苯丙氨酸的氨基功能化γ...2O_3磁固相萃取(英文)_秦铭杉_第8页
L-苯丙氨酸的氨基功能化γ...2O_3磁固相萃取(英文)_秦铭杉_第9页
L-苯丙氨酸的氨基功能化γ...2O_3磁固相萃取(英文)_秦铭杉_第10页
资源描述:

《L-苯丙氨酸的氨基功能化γ...2O_3磁固相萃取(英文)_秦铭杉》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

第56卷第1期南开大学学报(自然科学版)Vol.56№12023年2月ActaScientiarumNaturaliumUniversitatisNankaiensisFeb.2023ArticleID:0465-7942-(2023)01-0102-10MagneticSolidPhaseExtractionofL-phenylalaninebyAmino-functionalizedγ-Fe2O31111QinMingshan,ZhuXinyi,WeiDongwei,SongQiqi,211JinTianming,LiCun,YangLinyan(1.TianjinKeyLaboratoryofAgriculturalAnimalBreedingandHealthyHusbandry,CollegeofAnimalScienceandVeterinaryMedicine,TianjinAgriculturalUniversity,Tianjin300392,China;2.TianjinAcademyofAgriculturalSciences,Tianjin,300192,China)Abstract:Fouraminogenizednanoparticleswerepreparedasfollows:γ-Fe2O3@SiO2-cysteamine,γ-Fe2O3@SiO2-APTMS,γ-Fe2O3@SiO2-PEI,γ-Fe2O3@SiO2-G1.0.Magneticsolidphaseextractionexperi-mentsofL-phenylalaninehavebeencarriedoutataconcentrationof2.5×10-6mol/L,differentextractiontimesandpHgradients.Thelowerfluorescenceintensityofsupernatantindicatedthebetterextracteffects.Asforγ-Fe2O3@SiO2-G1.0nanoparticles,thebestadsorptionwasobtainedatpH=5,whiletheadsorptiontimewas8h.Asforγ-Fe2O3@SiO2-PEInanoparticles,lessadsorptionthanabovecouldbeobtainedatpH=3and0.5h.γ-Fe2O3@SiO2-PEInanoparticlestooklesstimetoextractL-phenylalanine.Functional-izedγ-Fe2O3nanoparticlesarepromisingforsolid-phaseextractionofL-phenylalanine.Keyword:Fe;surfacechemistry;IR;TEM;XPS;absorptionCLCnumber:O658.2Documentcode:A0IntroductionIntheresearchandapplicationsofnewnanoparticles,magneticnanoparticlesarewidelyusedbe-causeoftheiroptical,electrical,magnetic,thermalandcatalyticproperties.Magneticnanoparticlesareakindofnanoparticleswhichcanbemanipulatedbymagneticfields.Thiskindofparticleusual-lycontainstwocomponents.Thecoreisamagneticmaterial,usuallyiron,nickel,andcobalt.Thesurfaceisothermaterialswithfunctionalitiestoimprovestability,includingcarbonmaterials,ionicliquids,Metal-OrganicFrameworks,andotherpolymericmaterials.Whilenanoparticleswerelessthan1μmindiameter(typically5-500nm)andlargerbeadswere0.5-500μm.IndiameterAgroupofmagneticnanoparticleswithadiameterof50-200nmcomposedofmanyindividualmagneticnanoparticlesiscalledamagneticnanoparticlecluster,whichisthebasisforitsfurthermagneticas-Receiveddate:2021-10-25Foundationitem:SupportedbyOutstandingResearchAchievementAwardProjectofTianjinAgriculturalUniver-sity,theOpenTopicofGuangxiKeyLaboratoryfortheChemistryandMolecularEngineer-ingofMedicinalResources(CMEMR2016-B12),theNationalNaturalScienceFoundationofChina(21875117,31572492),theMunicipal-levelInnovativeandEntrepreneurialTrainingPlanforCollegeStudents(202210061109),theVeterinaryBitechnologyScientificResearchIn-novationTeamofTianjin,China(TD13-5091),theVeterinary“InnovativeTalentPeopleofYoungandMiddleAgeKeyMembersProject”ofTianjin,theNaturalScienceFoundationofTianjin,China(18JCYBJC30100,19JCQNJC13700)Biography:QinMingshan(1995-),male,nativeplace:HeilongjiangShuangyashan,Master.Correspondingauthor:YangLinyan(1982-),female,nativeplace:HebeiJinzhou,lecturer,directionofre-search:Nanoscaledrugcarrie.E-mail:y_linyan@163.com

1第1期秦铭杉等:L-苯丙氨酸的氨基功能化γ-FeO磁固相萃取·103·23[1-3]semblyintoamagneticnano-chain.Magneticnanoparticlesarethecoreandfoundationofmagnet-icsolidphaseextractiontechnology.Bychangingthefunctionalpartofthesurface,theeffectiveex-[4]tractionofdifferenttargetanalytescanberealized.Amongthem,polyamidoamine(PAMAM)dendrimershavethefollowingstructuralcharacteristics:accuratemolecularstructure;highgeometricsymmetry,alargenumberoffunctionalgroupsthatcanbemodified,andthereisacavityinthemolecule.Therelativemolecularmassiscontrollableandthemoleculeitselfisnanometersize.Basedonthesestructuralcharacteristics,dendriticmacromole-culeshaveuniqueproperties:goodmonodispersity,highstability,largesurfaceareaandhighactivity.Hence,PAMAMdendrimerswithmagneticnanoparticlesasthecorecanbepreparedasmagnetic[5-6]adsorbents.Magneticsolidphaseextraction(MSPE)isasolidphaseextractiontechnologywithmagneticor[7]magnetizedmaterialsasadsorbent.DuringtheMSPEprocess,themagneticadsorbentisnotdirect-lyfilledintotheadsorptioncolumn,butisaddedtothesolutionorsuspensionofthesampletoad-sorbthetargetanalytetothedispersedmagneticadsorbentsurface.Undertheactionofexternalmagneticfield,thetargetanalytemigrateswiththeadsorbentandelutesthemeasuredsubstancethroughtheappropriatesolventtoseparatefromthematrixofthesample.Comparedwiththecon-ventionalsolidphaseextractionmaterials,themagneticextractionmaterialhasalargerspecificsur-faceareaanddoesnotneedacumbersomecolumnloadingprocess.Thesamplesolutioncanbeadd-[8]eddirectlyforextraction.Intheprocessofextraction,itcanbecompletelydispersedintothesam-plesolutionandinfullcontactwiththemeasuredsubstance,soonlyashortequilibriumtimeandasmallamountofadsorbentareneededinthelowconcentrationtraceextraction.Comparedwiththegeneralsolidphaseextractionadsorbent,therearesuperparamagneticmagneticextractionmaterials,whenthereisnoexternalmagneticfield,whentheadsorptionprocessiscompleted,Themagneticextractionmaterialadsorbedonthesurfacebyexternalmagneticfieldisquicklyadsorbedtothecon-tainerwalltoachievetherapidseparationofsolidandliquidwithoutotherprocesses.Therefore,thetimerequiredforconventionalanalysisisgreatlyshortened,whichmakesmagneticsolidphaseex-tractionhavehigherextractionefficiencyandextractionabilitythanothersolidphaseextraction.Espe-ciallywhenthesamplecontainsmanycomplexchemicalcompositionsorcomplexmatrixsamplesintheformofliquidandinternallyexpandedsolidparticles,magnetic-solidphaseextractioncanbeusedaloneorincombinationwithfiltration,precipitation,andsolventexchangeforsamplepretreat-[9]ment.Aminoacidsarethebasicbuildingunitsofmanybiomolecules,oneoftheindispensablenutri-tionalcomponentsinorganisms,andplayavitalroleinmaintainingphysiologicalprocesses.Howev-er,thedetectionofaminoacidsposesagreatchallengeduetotheirstructuralsimilarity,spectralin-ertness,weakcarriers,andlackofelectrochemicalactivity.Atpresent,themethodsofaminoacidanalysisanddeterminationareconstantlydevelopingandimproving.Manymethodshavebeenusedtodetectaminoacids,includingchemicalmethod,spectrophotometry,chromatography,capillaryelec-trophoresisandsoon.However,mostofthesemethodshavethedisadvantagesofcomplexinstru-ment,highprice,singleuseandlonganalysistime,soitisstillveryimportanttoexplorenew[10-14]aminoaciddetectionmethodswhicharefast,simpleandmoresensitive.Phenylalanineisanim-portantaminoacidforthehumanbody,whichcouldbetransformedintotyrosineand,subsequently,intocatecholamineneurotransmitters,whilethereareindividualsbornwithphenylketonuria.Basedon

2·104·南开大学学报(自然科学版)第56卷theabovereasons,itisveryimportanttodeterminetheconcentrationofphenylalanineindifferent[15]biologicfluids.Here,fouraminogenizedmagneticnanoparticleswithγ-Fe2O3asthenucleuswereprepared.Magneticsolidphaseextraction(MSPE)experimentsofL-phenylalanine(L-Phe)havebeencarriedout.1ExperimentalSection1.1Preparationofγ-Fe2O3@SiO2nanoparticles2gofγ-Fe2O3nanoparticlesand60mLofdimethylsulfoxide(DMSO)wereplacedinathree-neckedflask,magneticallystirredatroomtemperaturefor24h,sonicatedfor1h.Andthen8mLoftetraethylorthosilicate(tetraethylorthosilicate)wasadded.Themixturewasshakenatroomtem-peraturefor48h,andthesupernatantwasremoved.Theresiduewaswashedthreetimeswithetha-nolandultrapurewater,andthenvacuum-driedat60℃.γ-Fe2O3@SiO2nanoparticlescouldbeob-[16]tained.2.2Preparationofcysteaminemodifiedγ-Fe2O3@SiO2nanoparticles100mgofγ-Fe2O3@SiO2,2gofLT-570,and20mLof0.4%aceticacidsolutionweremixedandstirredfor3h.Themixturewaswashedwiththeultrapurewaterfivetimes,4mLofcysteaminesolution(50mg/mL)wasadded,andtheobtainedmixturewasirradiatedunder254nmUVfor18h.Afterwashingwithethanolandultrapurewaterfortwice,theresiduewastreatedwithtriethylaminesolution(pH=9)for5min,washedwithethanolfortwiceandultrapurewaterforthreetimes,andthenvacuum-driedat60℃.γ-Fe2O3@SiO2-cysteaminenanoparticlescouldbeob-[17]tained.2.3PreparationofAPTMSmodifiedγ-Fe2O3@SiO2nanoparticles1gofγ-Fe2O3@SiO2nanoparticleswasdispersedin50mLethanoland2mLof(3-aminopro-pyl)trimethoxysilane(APTMS)wasadded.Theobtainedmixturewasstirredat80℃for8handwashedwithultrapurewaterforfivetimes,andthenvacuum-driedat60℃,toobtainγ-[16]Fe2O3@SiO2-APTMSnanoparticles.2.4PreparationofPEImodifiedγ-Fe2O3@SiO2nanoparticles10mLofpolyethyleneimine(PEI)aqueoussolution(2mg/mL)and2gofγ-Fe2O3@SiO2nanoparticlesweremixedwith30mLofultrapurewater.Themixturewasshakenatroomtempera-turefor18h,andthesupernatantwasremoved.Theresiduewaswashedwithethanolandultrapurewaterthreetimes,andthenvacuum-driedat60℃.γ-Fe2O3@SiO2-PEInanoparticlescouldbeob-tained.2.5Preparationofγ-Fe2O3@SiO2&PAMAMnanoparticles2.5.1PreparationofG0.5-G1.0:Undernitrogenatmosphere,17.5mLofAPTMSand20mLofmethanolweremixed.Themethanolsolution(20mL)ofmethylacrylate(MA,19mL)wasaddeddropwisewithin1hat0℃.Themixturewasstirredfor30min,heatedto25℃andstirredfor24h.G0.5couldbeobtainedbyvacuumevaporation.10gofG0.5and15mLofmethanolweremixed.Themixtureofdiethylenetriamine(DETA,17mL)andmethanol(14mL)wasaddeddropwisewithin2hat0℃.Themixturewasstirredfor[18]30min,heatedto25℃andstirredfor72h.Aftervacuumevaporation,G1.0couldbeobtained.

3第1期秦铭杉等:L-苯丙氨酸的氨基功能化γ-FeO磁固相萃取·105·232.5.2Preparationofγ-Fe2O3@SiO2-G1.0Nanoparticles:Undernitrogenatmosphere,5gofγ-Fe2O3@SiO2nanoparticleswasdispersedinto150mLoftoluene,and10gofG1.0wereadded.Af-terstirringfor24hat70℃,themixturewaswashedwithethanolthreetimes,washedwithultra-[19]purewatertwice,andthenvacuum-driedat60℃.γ-Fe2O3@SiO2-G1.0couldbeobtained.2.6MSPEofaminoacids-6TheL-phenylalanine(L-Phe)solutionswerepreparedataconcentrationof2.5×10mol/LandsetpHgradientsto3,5,7,9,and11.20mgoftheaminatednanoparticleswasdispersedin4mLsolutionofL-Phe.Theextractiontimewassetto8,4,2,1,and0.5h.3mLofthesupernatantwastaken,andthesupernatantwasusedforfluorescencedetection.2.7FluorescencedetectionofaminoacidsPreparationof0.1%o-phthalaldehydederivative:50mgofo-phthalaldehyde(OPA)wasaddedinto1mLofethanol,andthen19mLofboricacidbuffer(pH=9.5)and200μLofβ-mercaptoeth-anolwereadded.Themixturewasdilutedto50mLwithboricacidbuffer,andstoredinrefrigera-torat4℃.Preparationof0.1mol/Lphosphatebuffer:disodiumhydrogenphosphatesolution(0.1mol/L)andsodiumdihydrogenphosphatesolution(0.1mol/L)werepreparedrespectively.Andthen94.7mLofdisodiumhydrogenphosphatesolutionand5.3mLofsodiumdihydrogenphosphatesolutionweremixed.1mLofthesupernatantwastakenandreactedwith1mLwater,2mLo-phthalaldehydede-rivative(0.1%)and2mLphosphoricacidbuffer(0.1mol/L,pH=8)inthedarkfor5min.Theproductswereanalyzedusingfluorescencespectrophotometer(λex=360nm,slit=5nm)basedonami-noacid.2Resultsanddiscussion2.1IRAnalysisAseriesofamino-basedmagneticnanoparticles3440FeO23werepreparedofγ-Fe2O3.InfraredSpectroscopy(IR)1100FeO@SiO23229001640440-650wasusedforcharacterizationoftheobtainedFeO@SiO-LT-570232nanoparticles.AsshowninFig.1,theIRspectraofFeO@SiO-cysteamine232γ-Fe2O3@SiO2nanoparticles,γ-Fe2O3@SiO2-LT-570FeO@SiO-APTMS232nanoparticles,γ-Fe2O3@SiO2-cysteaminenanoparti-Fe2O3@SiO2-PEIcles,γ-Fe2O3@SiO2-APTMSnanoparticles,γ-Fe2O3@SiO2-G1.0Fe2O3@SiO2-PEInanoparticles,γ-Fe2O3@SiO2-G1.0nanoparticlescouldbeobtained.Forγ-Fe2O3@SiO2nanoparticles,thepeakof4500350025001500500-1wavenumbers/cm-1440-650cmwascausedbythestretchingvibra-Fig.1IRspectraofγ-Fe2O3@SiO2nanoparticles,tionofFe-Obond,thepeakof1000-1100γ-Fe2O3@SiO2-LT-570nanoparticles,γ-Fe2O3@SiO2--1cmwascausedbythestretchingvibrationofSi-cysteaminenanoparticles,γ-Fe2O3@SiO2-APTMS-1O-Sibond,andthepeakof3440cmwasnanoparticles,γ-Fe2O3@SiO2-PEInanoparticles,causedbythestretchingvibrationofSi-OHbond.γ-Fe2O3@SiO2-G1.0nanoparticles

4·106·南开大学学报(自然科学版)第56卷[19-21]Theresultsshowedthatγ-Fe2O3wassuccessfullycoatedwithSiO2.Forothernanoparticles,becauseofthenewlyintroducednitrogen-containingcomponentsafter-1amination,acharacteristicpeakatabout2900cmcouldbeassignedtoC-Hstretchingvibration-1[22-23]peakandthepeakof1550-1640cmcouldberepresentingN-Hbendingvibrations.2.2TEManalysisTheTEMimageofγ-Fe2O3@SiO2-G1.0wasshowninFig.2.Theγ-Fe2O3@SiO2-G1.0nanoparticleswerecluster-shaped,withasingleclustersizeofapproximately60-100nm.Itcouldbeseenthatthemagneticcompositeofγ-Fe2O3@SiO2-G1.0shouldbeasecondaryparticleformedbythere-unionoftheγ-Fe2O3@SiO2-G1.0nanopar-ticles.ItcouldbeseenfromFig.2thatthemagneticcompositedisplayscore-shellmor-加速电压放大倍率相机长度200nm200kV40000×-phologywithdarkinnerγ-Fe2O3coreandFig.2TEMimageofγ-Fe2O3@SiO2-G1.0lightcontrastoutersilicashell,whichillus-[24-25]tratedthesuccessfuldecorationofγ-Fe2O3withsilicagelandfunctionalPAMAMdendrimer.2.3XPSanalysisFig.3(A)showsthelow-resolutionXPSsurveyspectraofγ-Fe2O3@SiO2nanoparticles,γ-Fe2O3@SiO2-LT-570nanoparticles,γ-Fe2O3@SiO2-cysteaminenanoparticles,γ-Fe2O3@SiO2-APT-MSnanoparticles,γ-Fe2O3@SiO2-PEInanoparticles,γ-Fe2O3@SiO2-G1.0nanoparticles.ThepeaksFeO@SiO232FeO@SiO-LT-570Fe2p232O1sFe2O3@SiO2-cysteamineC-C/C-HFeO@SiO-PEI232C=OFeO@SiO-APTMS232C1sSi2pFeO@SiO-G1.0N1sC-O/C-N23214001000600200-200300295290285280275bindingenergy/eVbindingenergy/eV(A)(B)A:XPSspectraofγ-Fe2O3@SiO2nanoparticles,γ-Fe2O3@SiO2-LT-570nanoparticles,γ-Fe2O3@SiO2-cysteaminenanoparticles,γ-Fe2O3@SiO2-PEInanoparticles,γ-Fe2O3@SiO2-G1.0nanoparticles,B:high-resolutionC1sspectrumofγ-Fe2O3@SiO2nanoparticles,C:high-resolutionC1sspectrumofγ-Fe2O3@SiO2-LT-570nanoparticles,D:high-resolutionC1sspectrumofγ-Fe2O3@SiO2-cysteaminenanoparticles,E:high-resolutionC1sspectrumofγ-Fe2O3@SiO2-PEInanoparticles,F:high-resolutionC1sspectrumofγ-Fe2O3@SiO2-G1.0nanoparticles,G:high-resolutionO1sspectrumofγ-Fe2O3@SiO2nanoparticles,H:high-resolutionO1sspectrumofγ-Fe2O3@SiO2-LT-570nanoparticles,I:high-resolu-tionO1sspectrumofγ-Fe2O3@SiO2-cysteaminenanoparticles,J:high-resolutionO1sspectrumofγ-Fe2O3@SiO2-PEInanoparticles,K:high-resolutionO1sspectrumofγ-Fe2O3@SiO2-G1.0nanoparticlesFig.3XPSspectra

5第1期秦铭杉等:L-苯丙氨酸的氨基功能化γ-FeO磁固相萃取·107·23C-C/C-HC-C/C-HC-O/C-NC=OC-O/C-NC=OC-O/C-NC=OC-C/C-H300295290285280300295290285280275300295290285280bindingenergy/eVbindingenergy/eVbindingenergy/eV(C)(D)(E)C-C/C-HFe-OFe-OSi-OC=O-OH-OHSi-OC-O/C-N300295290285280275545540535530525545540535530525bindingenergy/eVbindingenergy/eVbindingenergy/eV(F)(G)(H)Fe-OFe-OFe-OSi-OSi-OSi-O-OH-OH-OH545540535530525545540535530525545540535530525bindingenergy/eVbindingenergy/eVbindingenergy/eV(I)(J)(K)Fig.3(Countinued)ofFe2p,Si2p,C1s,O1sandN1sappearedintheXPSspectrum.AccordingtotheseXPSspectra,itcouldbeseenthattheappearanceofSi2ppeakinFig.3(A)indicatedthattheencapsulationofSiO2wassuccessful.TheappearanceofN1speakinγ-Fe2O3@SiO2-LT-570,γ-Fe2O3@SiO2-cysteamine,γ-Fe2O3@SiO2-PEI,γ-Fe2O3@SiO2-G1.0indi-catedthatthefunctionalizationofγ-Fe2O3@SiO2wassuccessful.ThehighresolutionspectrumofC1sinFig.3(B-F)furtherconfirmedC-C/C-H,C-O/C-N,C[26-27]=Ogroupswerepresentedat284.6,286.1and288.4eV,respectively.InFig.3(G-K)thehighresolutionspectrumofO1sexhibitedthecharacteristicpeaksofSi-O,-OH[28-29]andFe-Oat532,531and529eV,respectively.2.4FluorescenceanalysisThestrengthoftheadsorptioncapacityunderdifferentpHvaluesanddifferentadsorptiontimewasdeterminedbythefluorescencedetectionofL-phenylalanineintheadsorptionfluid(Fig.4).Sincethesupernatantwasdetectedafteradsorption,thelowerfluorescenceintensityindicated

6·108·南开大学学报(自然科学版)第56卷pH=51840pH=11pH=7400pH=7pH=1116pH=9pH=9pH=514pH=93030012pH=710pH=11pH=3202008intensityintensity6pH=3intensitypH=31004102pH=5000-2350400450500550600350400450500550600350400450500550600wavelength/nmwavelength/nmwavelength/nm(A)(B)(C)1000140pH=3pH=118h800.5h120800pH=54h60100pH=76001h802h4060pH=9400intensityintensity1hintensity402h2000.5h20204h0008h350400450500550600350400450500550600350400450500550600wavelength/nmwavelength/nmwavelength/nm(D)(E)(F)254h3004h1202h2hAPTMS201h1001h20015808h600.5h10intensity8hintensity40intensity100cysteamine5200.5hPEI000G1.0350400450500550600350400450500550600350400450500550600wavelength/nmwavelength/nmwavelength/nm(G)(H)(I)A:Thefluorescenceintensityofphenylalanineintheγ-Fe2O3@SiO2-APTMSnanoparticleswasobtainedundertheadsorptiontimeof0.5handpH=3,5,7,9and11,B:Thefluorescenceintensityofphenylalanineintheγ-Fe2O3@SiO2-G1.0nanoparticleswasob-tainedundertheadsorptiontimeof8handpH=3,5,7,9and11,C:Thefluorescenceintensityofphenylalanineintheγ-Fe2O3@SiO2-PEInanoparticleswasob-tainedundertheadsorptiontimeof0.5handpH=3,5,7,9and11,D:Thefluorescenceintensityofphenylalanineintheγ-Fe2O3@SiO2-cysteaminenanoparticleswasobtainedundertheadsorptiontimeof0.5handpH=3,5,7,9and11,E:Thefluorescenceintensityofphenylalanineintheγ-Fe2O3@SiO2-APTMSnanoparticleswasobtainedundertheconditionsofpH3andtimeof0.5,1,2,4and8h,F:Thefluorescenceintensityofphenylalanineintheγ-Fe2O3@SiO2-G1.0nanoparticleswasob-tainedundertheconditionsofpH5andtimeof0.5,1,2,4and8h,G:Thefluorescenceintensityofphenylalanineintheγ-Fe2O3@SiO2-PEInanoparticleswasob-tainedundertheconditionsofpH3andtimeof0.5,1,2,4and8h,H:Thefluorescenceintensityofphenylalanineintheγ-Fe2O3@SiO2-cysteaminenanoparticleswasobtainedundertheconditionsofpH9andtimeof0.5,1,2,4and8h,I:γ-Fe2O3@SiO2-APTMS,γ-Fe2O3@SiO2-G1.0,γ-Fe2O3@SiO2-PEI,γ-Fe2O3@SiO2-cyste-aminecomparisonoffluorescenceintensityunderoptimalconditionsFig.4Fluorescencespectrum

7第1期秦铭杉等:L-苯丙氨酸的氨基功能化γ-FeO磁固相萃取·109·23thatthematerialhadthebetteradsorptioneffectsforL-phenylalanine.InFig.4(A-H),itwasshownthatthefluorescenceintensityofγ-Fe2O3@SiO2-PEI,γ-Fe2O3@SiO2-APTMSnanoparticleswasthelowestatpH=3for0.5h,γ-Fe2O3@SiO2-G1.0nanoparticlesat8hofpH=5,andthefluorescenceintensityofγ-Fe2O3@SiO2-cysteinenanoparticleswasthelowestat0.5hofpH=9.Thenfourkindsofnanoparticleswereselectedtocomparethefluorescenceintensityunderthebestconditions,whichwasshowedinFig.4(I).Itcouldbeseenthatγ-Fe2O3@SiO2-G1.0nanoparticleshasthebestadsorptionofL-phenylalanine.3ConclusionsInconclusion,byγ-Fe2O3asthecore,thefirstpackageisalayerofSiO2shell,followedbyaminationmodification,preparationforγ-Fe2O3@SiO2-PEI,γ-Fe2O3@SiO2-APTMS,γ-Fe2O3@SiO2-G1.0,γ-Fe2O3@SiO2-cysteine,Theobtainedsampleswereusedformagneticsolidphaseextractionofaminoacids.ThepreparedsamplesandintermediateswerecharacterizedbyIRandXPSandTEM-1analyses,indicatingthesuccessoftheγ-Fe2O3modification.Thepeakof440-650cmiscausedby-1thestretchingvibrationofFe-Obond,thepeakof1000-1100cmiscausedbythestretchingvibration-1ofSi-O-Sibond,andthepeakof3440cmiscausedbythestretchingvibrationofSi-OHbond.-1ThisshowsthatSiO2issuccessfullycoatedwithγ-Fe2O3.Thepeakatabout2900cmcouldbeassigned-1toC-Hstretchingvibrationpeakandthepeakof1550-1640cmcouldberepresentingNH-bendingvibrations.Thisshowsthattheaminomodificationwassuccessful.XPSspectracanalsoprovethesuccessofSiO2coatingandaminationmodification,andTEMimagescanalsoshowthesuccessofγ-Fe2O3@SiO2-G1.0modification,andprovethatthisisananoscalematerial.Inthefluorescenceanalysis,γ-Fe2O3@SiO2-PEIandγ-Fe2O3@SiO2-G1.0havehigheradsorptionstrengthforaminoacids.Althoughγ-Fe2O3@SiO2-G1.0hasabetteradsorptionstrength,thepreparationofγ-Fe2O3@SiO2-PEIisrelativelysimpleandthetimeforadsorptionisshorter,soPEImodifiedforthemagneticsolidphaseextractionofaminoacidsismoresuitable.References1TadicM,KraljS,JagodicM,etal.Magneticpropertiesofnovelsuperparamagneticironoxidenanoclustersandtheirpeculiarityunderannealingtreatment[J].AppliedSurfaceScience,2014,322:255-264.2KraljS,MakovecD.Magneticassemblyofsuperparamagneticironoxidenanoparticleclustersintonanochainsandnanobundles[J].ACSNano,2015,9(10):9700-9707.3ZhuNL,ZhangB,YuQL.Geneticengineering-facilitatedcoassemblyofsyntheticbacterialcellsandmagneticnanoparticlesforefficientheavymetalremoval[J].ACSApplMaterInterfaces,2020,12:22948-22957.4HoqueMdA,AhmedMR,RahmanGT,etal.FabricationandcomparativestudyofmagneticFeandα-Fe2O3nanoparticlesdispersedhybridpolymer(PVA+Chitosan)novelnanocompositefilm[J].ResultsinPhysics,2018,10:434-443.5KharwadeR,MoreS,WarokarA,etal.Starburstpamamdendrimers:Syntheticapproaches,surfacemodifica-tions,andbiomedicalapplications[J].ArabianJournalofChemistry,2020,13(7):6009-6039.6ZhuY,NiuYZh,LiHY,etal.RemovalofCd(Ⅱ)andFe(Ⅲ)fromDMSObysilicagelsupportedPAMAMdendrimers:Equilibrium,thermodynamics,kineticsandmechanism[J].EcotoxicologyandEnvironmentalSafety,2018,162:253-260.7WangYD,QinJA,FuYW,etal.Researchprogressontheapplicationofmagneticsolidphaseextraction

8·110·南开大学学报(自然科学版)第56卷foranalysisofpesticideresidue[J].FoodTechnology,2020,45(8):259-266.8ChenJ,QinSR,ZhangY,etal.Applicationandresearchofmagneticsolid-phaseextractioninthedetectionoffoodadditives[J].FoodTechnology,2020,45(8):259-266.9RenYJ.EstablishmentofdetectionmethodsandspicycharacteristicsofcapsaicininSichuancuisine[J].FreshandProcessing,2019,19(6):191-196.10YaminiY,FarajiM.ExtractionanddeterminationoftraceamountsofchlorpromazineinbiologicalfluidsusingmagneticsolidphaseextractionfollowedbyHPLC[J].JournalofPharmaceuticalAnalysis,2014,4(4):279-285.11MobarrazM,GanjaliMR,ChaichiMJ,etal.FunctionalizedZnSquantumdotsasluminescentprobesforde-tectionofaminoacids[J].SpectrochimicaActaPartA:MolecularandBiomolecularSpectroscopy,2012,96:801-804.12ElisabeteO,CarlaS,PatríciaP,etal.Turn-onselectivevitaminB6derivativefluorescentprobeforhistidinedetectioninbiologicalsamples[J].TheAnalyst,2013,138(13):3642-3645.13TerryJM,SmithZM,McDermottGP,etal.Chemiluminescencedetectionofaminoacidsandrelatedcom-poundsusingacidicpotassiumpermanganate,manganese(IV)ortris(2,2′-bipyridine)ruthenium(Ⅲ)[J].Talanta,2012,99:1051-1056.14DaiZhL,WuZhL,JiaSCh,etal.Analysisofaminoacidcompositioninproteinsofanimaltissuesandfoodsaspre-columno-phthaldialdehydederivativesbyHPLCwithfluorescencedetection[J].JournalofChroma-tographyB,2014,964:116-127.15DinuA,ApetreiC.Areviewonelectrochemicalsensorsandbiosensorsusedinphenylalanineelectroanalysis[J].Sensors,2020,20:2496-2517.16YangLY,FuLM,LiBX,etal.Fluorescenceenhancementmethodforenrofloxacinextractionbycore-shellmagneticmicrospheres[J].AustralianJournalofChemistry,2020,73:1105-1111.17YangLY,LiL,TuQ,etal.Photocatalyzedsurfacemodificationofpoly(dimethylsiloxane)withpolysaccharidesandassayoftheirproteinadsorptionandcytocompatibility[J].AnalChem,2010,82:6430-6439.18ZhouYZh,LuanLP,TangBT,etal.FabricationofSchiffbasedecoratedPAMAMdendrimer/magneticFe3O4forselectiveremovalofaqueousHg(Ⅱ)[J].ChemicalEngineeringJournal,2020,398:125651.19ZhaoJJ,NiuYZh,RenB,etal.SynthesisofSchiffbasefunctionalizedsuperparamagneticFe3O4compositesforeffectiveremovalofPb(Ⅱ)andCd(Ⅱ)fromaqueoussolution[J].ChemicalEngineeringJournal,2018,347:574-584.20ParsaeeZ,HaratipourP,LaricheMJ,etal.Anovelhighperformancenanochemosensorforcopper(Ⅱ)ionbasedonanultrasound-assistedsynthesizeddiphenylamine-basedSchiffbase:Design,fabricationanddensityfunctionaltheorycalculations[J].UltrasonicsSonochemistry,2018,41:337-349.21NiuYZh,QuRJ,ChenH,etal.SynthesisofsilicagelsupportedsalicylaldehydemodifiedPAMAMden-drimersfortheeffectiveremovalofHg(Ⅱ)fromaqueoussolution[J].JournalofHazardousMaterials,2014,278:267-278.22AbednatanziS,AbbasiA,Masteri-FarahaniM.Post-syntheticmodificationofnanoporousCu3(BTC)2metal-or-ganicframeworkviaimmobilizationofamolybdenumcomplexforselectiveepoxidation[J].JournalofMolecularCatalysisA:Chemical,2015,399:10-17.23KimSN,YangST,KimJ,etal.Post-synthesisfunctionalizationofMIL-101usingdiethylenetriamine:astudyonadsorptionandcatalysis[J].CrystEngComm,2012,14:4142-4147.24NerambourgN,AubertT,NeaimeC,etal.Multifunctionalhybridsilicananoparticlesbasedon[MoBr]2-614phosphorescentnanosizedclustes,magneticγ-FeOandplasmonicgoldnanoparticles[J].JournalofColloidAnd23InterfaceScience,2014,424:132-140.25MannaK,SrivastavaSK.Fe3O4@Carbon@Polyanilinetrilaminarcore-shellcompositesassuperiormicrowaveab-sorberinshieldingofelectromagneticpollution[J].ACSSustainableChemEng,2017,5(11):10710-10721.26ChenH,WangZ,ZongS,etal.SERS-fluorescencemonitoreddrugreleaseofaredox-responsivenanocarrier

9第1期秦铭杉等:L-苯丙氨酸的氨基功能化γ-FeO磁固相萃取·111·23basedongrapheneoxideintumorcells[J].ACSApplMaterInterfaces.2014,6(20):17526-17533.27JungYC,MuramatsuH,FujisawaK,etal.Opticallyandbiologicallyactivemusselprotein-coateddouble-walledcarbonnanotubes[J].Small,2011,7(23):3292-3297.28PanN,LiL,DingJ,etal.ASchiffbase/quaternaryammoniumsaltbifunctionalgrapheneoxideasanefficientadsorbentforremovalofTh(Ⅳ)/U(Ⅵ)[J].JournalofColloidandInterfaceScience,2017,508:303-312.29DuanShX,XuXT,LiuX,etal.EffectofFe3O4@PDAmorphologyontheU(Ⅵ)entrapmentfromaqueoussolution[J].AppliedSurfaceScience,2018,448:297-308.L-苯丙氨酸的氨基功能化γ-Fe2O3磁固相萃取1111211秦铭杉,朱欣怡,韦冬微,宋淇淇,金天明,李存,杨琳燕(1.天津农学院动物科学与动物医学学院,天津市农业动物繁育与健康养殖重点实验室,天津300392;2.天津市农科院,天津300192)摘要:通过不同的修饰方法制备了以γ-Fe2O3为核的四种氨基化的磁性纳米材料分别为γ-Fe2O3@SiO2-cysteamine,γ-Fe2O3@SiO2-PEI,γ-Fe2O3@SiO2-G1.0,γ-Fe2O3@SiO2-APTMS.在吸附时间为0.5,1,2,4,8h,pH=3,5,7,9,11的条件下,通过磁固相萃取的方法吸附浓度为2.5×10-6mol/L的苯丙氨酸,随后用荧光分光光度计检测上清液的荧光强度,荧光强度越低说明纳米材料的吸附效果越优秀.通过试验后发现γ-Fe2O3@SiO2-G1.0磁性纳米粒子在pH=5,吸附时间为8h的条件下的吸附性最好.γ-Fe2O3@SiO2-PEI磁性纳米粒子在pH=3,吸附时间为0.5h条件下的吸附性略逊于上者,但该材料的制备过程简易,吸附氨基酸所需时间更短.因此功能化的γ-Fe2O3磁性纳米材料用于固相萃取氨基酸具有一定的研究前景.关键词:Fe;表面化学;IR;TEM;XPS;吸附

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭