Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines - Lee et al. - 2021 - Unknown

Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines - Lee et al. - 2021 - Unknown

ID:81823199

大小:1.66 MB

页数:12页

时间:2023-07-20

上传者:U-14522
Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines - Lee et al. - 2021 - Unknown_第1页
Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines - Lee et al. - 2021 - Unknown_第2页
Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines - Lee et al. - 2021 - Unknown_第3页
Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines - Lee et al. - 2021 - Unknown_第4页
Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines - Lee et al. - 2021 - Unknown_第5页
Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines - Lee et al. - 2021 - Unknown_第6页
Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines - Lee et al. - 2021 - Unknown_第7页
Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines - Lee et al. - 2021 - Unknown_第8页
Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines - Lee et al. - 2021 - Unknown_第9页
Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines - Lee et al. - 2021 - Unknown_第10页
资源描述:

《Azavinylidene Complexes from Coupling Reactions of Organonitriles with Phosphines - Lee et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/OrganometallicsArticleAzavinylideneComplexesfromCouplingReactionsofOrganonitrileswithPhosphines††Kui-FunLee,TilongYang,Long-YiuTsang,HermanH.Y.Sung,IanD.Williams,*ZhenyangLin,*andGuochenJia*CiteThis:Organometallics2021,40,358−369ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Thereactionsoftherhenium(III)-phosphinecomplexReCl3(PMePh2)3withorganonitriles(NCR)werestudiedandfoundtogivenoveladditionaswellassimplesubstitutionproducts.RefluxingReCl3(PMePh2)3inacetonitrile(MeCN)yieldedamixtureoftheorganonitrilerheniumcomplexReCl3(PMePh2)2(NCMe)andtherheniumphosphonium-substitutedazavinylidenecomplexReCl3(PMePh2)2{NC(PMePh2)-Me}.Similarly,reactionsofReCl3(PMePh2)3witharylnitrilesp-R-C6H4CN(R=H,Me,andBr)gavethecorrespondingazavinylidenecomplexesReCl3(PMePh2)2{NC(PMePh2)(p-C6H4R)}.ThenitrilecomplexReCl3(PPh3)2(NCPh)isunreactivetowardexternalPPh3,butitreactswithexcessPMe3toproducetheazavinylidenecomplexReCl3(PMe3)2{NC(PMe3)Ph}.ComputationalstudiesrevealtheeffectofligandandsubstituentoforganonitrilesonthethermodynamicsandkineticsforthereactionsofReCl3(PR3)2(NCR′)withPR3.Boththeexperimentalandcomputationalresultsindicatethatnucleophilicadditionofphosphinestocoordinatednitrilesismorefavorablefornitrileswithanelectron-withdrawinggroupandforphosphineswhicharemoreelectron-donating.■INTRODUCTIONmononuclearcomplexesofthistypefromeitherreactionsoforganonitrileswithphosphinecomplexesorreactionsofPhosphinesandorganonitrilesarecommonlyusedligandsforcoordinationandorganometalliccompounds.1Theyusuallydophosphineswithorganonitrilecomplexes.notreactwitheachother,andnumerouscomplexeswithbothReportedP−Cbondformationreactionsoforganonitrilesaphosphineandanorganonitrileligandonthesamemetalmainlyinvolveinsertionofnitrilesintometal−phosphide(M−78centerareknown.WhenaphosphinereactswithanPR2),metal−iminophosphide(M−{P(NR′)R2}),and9organonitrilecomplex,substitutionofanitrileligandwithmetal−phosphinidene(MPR)bonds.SimilarP−Cbondthephosphineligandnormallyoccurs.Infact,organonitrileformationreactionsinvolvingcouplingsoforganonitrilesand10complexeshaveoftenbeenusedasconvenientstartingtertiaryphosphinesonmononuclearmetalfragmentsareverymaterialsincoordinationchemistryduetothelabilityofthescarce.Dilworthandhisco-workersfoundthatthereactionsofNCRligands.ReactionsoforganonitrileswithphosphinetheRe(V)oxocomplexes[ReOX3(PPh3)2](1,X=ClorBr)complexesusuallyoccuratasitewithoutinvolvingthemetal−withtheaminophosphinePh2PN(SiMe3)2,PPh3,andwaterinphosphinebond,oroccasionallyleadtothesubstitutionofawetMeCNgiveamixtureofReX2{NC(Me)P(O)Ph2}-DownloadedviaUNIVOFCALIFORNIASANTABARBARAonMay15,2021at17:10:15(UTC).Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.phosphineligandbyanorganonitrileligand.Forexample,(MeCN)(PPh3)(2)andReX3(PPh3)2(MeCN)(3),presum-OsH(PiPr)reactswithNCPhtogivetheazavinylidene11632ablyviaamidointermediateA(Scheme1).Veryrecently,i2,3complexOsH3(NCPh)(PPr3)2,whereasthereactionofPeryshkovandhisco-workersdiscoveredthatTaCl5reactedRuCl2(PPh3)3withAg2SO4inasolutionofacetonitrileandwith1.14equivofPPh3and1.1equivofPhCNtogive24methanolproducesRu(η-SO4)(NCMe)2(PPh3)2.unexpectedcationicimidocomplex4,andwith2equivofIthasbeendemonstratedthatcoordinatedorganonitriles−−PPh3andexcessMeCNtogivethezwitterionicvinylimidocanbeattackedbyavarietyofnucleophilesincludingH,R,−−5complexTa{NC(PPh3)CH2}Cl4(MeCN)(5)(SchemeOR,SR,andamines.Phosphinesarealsowell-known1261).Complex4ispresumablyformedviaattackofnucleophiles.Inprinciple,annitrilecomplexLnM(NCR)+[HPPh3]onphosphoranylideneintermediateB,while5iscouldalsobeattackedbyaphosphineonthecoordinatedorganonitrileligandtogiveaphosphonium-substitutedazavinylidene(orketimide)complexLnM{NC(PR′3)R},Received:November4,2020acomplexsimilartovinylidenecomplexesLnMCCRR′Published:January20,2021displayingclose-to-linearM−N−Cgeometriesasaresultofsignificantπ-donationfromthenitrogenatomtotheemptymetalorbitals.However,tothebestourknowledge,noreportshaveappearedintheliteratureontheformationof©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.organomet.0c00704358Organometallics2021,40,358−369

1Organometallicspubs.acs.org/OrganometallicsArticleC(PMePh)Me}(8a),whichdisplayed31Psignalsat−3.7andScheme1.ReportedP−CBondFormationReactions2InvolvingPhosphinesandNitriles−37.2ppm.ThestructureofthenitrilecomplexRe-Cl3(PMePh2)2(NCMe)(7a)hasbeenconfirmedbyanX-raydiffractionstudy.AsshowninFigure1,thecomplexadoptedpresumablyformedbyattackofPPh3ontheazaalleneintermediateTa(NC=CH2)Cl4(MeCN).Inthiswork,wereportformationofphosphonium-Figure1.Crystalstructureofnitrilecomplex7a.HydrogenatomsaresubstitutedazavinylidenecomplexesReCl3(PR3)2{NC-omittedforclarity.Selectedbondlengths[Å]andangles[°]:Re(1)−(PR3)R′}fromthereactionsofReCl3(PMePh2)3withR′CNN(1)2.039(2),N(1)−C(1)1.139(3),C(1)−N(1)−Re(1)176.2(2),andthereactionsofReCl3(PPh2)3(R′CN)withexternalN(1)−C(1)−C(2)178.1(3).phosphines.■RESULTSANDDISCUSSIONanoctahedralgeometrywiththreemeridionallyboundReactionsofReCl3(PMePh2)3withNitriles.ComplexeschlorideligandsandtheMeCNligandbeingtranstooneofofthetypeReCl3(PR3)2(R′CN)areusefulprecursorsforthechlorideligands.Thecomplexadoptsageometrysimilarto13thatof[VCl(MeCN)(PPhMe)].16TheRe−Nbondcoordination/organometalliccomplexesofrhenium.The322monomericrhenium(III)complexesReCl3(PAr3)2(RCN)(Rdistancein7a(2.039(2)Å)issimilartothatoftheanalogous17=MeandPh;Ar=Ph,p-tol,andm-tol)canbepreparedincomplexReCl3(PPh3)2(NCMe)(2.068(5)Å),butitishighyieldsbyheatingReOCl3(PAr3)2withanexcessoftheappreciablyshorterthanthatofReCl153(dppe)(NCMe)correspondingtriarylphosphineandanorganonitrile.14Sim-(2.121(8)Å)inwhichthenitrileligandistranstoailarly,thecomplexReOCl3(dppe)reactswithacetonitrileinphosphineligand.Whileparamagneticcomplex7aissilentinthe31P{1H}NMRspectrum,the1HNMRspectrumshowedthepresenceofexcessoftriphenylphosphinetogivethemonomericrhenium(III)nitrilecomplexReCl3(dppe)-fivesharplinesat57.26(s,3H,NCMe),14.38(d,J=7.5Hz,(MeCN).15Ithasbeensuggestedthatthe8H,Ph),9.35(t,J=7.5Hz,4H,Ph),9.13(t,J=7.5Hz,8H,ReCl3(PR3)2(R′CN)complexesweregeneratedbythePh),and0.82(s,6H,PMePh2)ppm,consistentwiththesolid-reactionsofR′CNwithReCl3(PR3)2intermediatesderivedstatestructure.fromthereactionsofReOCl3(PR3)2withPR3.ThestructureoftheazavinylidenecomplexRe-InourattemptstopreparecomplexesofthetypeCl3(PMePh2)2{NC(PMePh2)Me}(8a)hasalsobeenReCl3(PMePh2)2(R′CN),wehavecarriedoutthereactionsdeterminedbyanX-raydiffractionstudy.AsshowninFigureofReCl3(PMePh2)3withorganonitriles.Noappreciable2,thecomplexhasacoordinationspheresimilartothatofreactionwasobservedafteramixtureofReCl3(PMePh2)3nitrilecomplex7awiththreemeridionallyboundchloride(6)and2equivalentsofMeCNintoluenewasrefluxedfor4h.ligandsandtwotrans-disposedPMePh2ligands.ThemostInterestingly,refluxingReCl3(PMePh2)3(6)inacetonitrilefor2hproducedadarkgreensolution,whichdisplayedasinglet31P{1H}signaloffreePMePhat−26.6ppmandtwosinglet231P{1H}NMRsignalsat−3.7and−37.2ppm.Byrepeatedrecrystallizations,weisolatedtwocrystallinecomplexesfromthereactionmixture.OneisorangeincolorandwasidentifiedastheparamagneticnitrilecomplexReCl3(PMePh2)2(NCMe)(7a),whichis31PNMRsilent(Scheme2).Theotherisdarkgreenincolorandwasidentifiedasthephosphonium-substitutedazavinylidenecomplexReCl3(PMePh2)2{NScheme2.ReactionsofReCl3(PMePh2)3withAcetonitrileFigure2.Crystalstructureofazavinylidenecomplex8a.Hydrogenatomsareomittedforclarity.Selectedbondlengths[Å]andangles[°]:Re(1)−N(1)1.789(3),N(1)−C(1)1.302(5),P(3)−C(1)1.781(3),C(1)−N(1)−Re(1)177.7(3),C(1)−N(1)−P(3)113.1(3),N(1)−C(1)−C(2)120.5(2).359https://dx.doi.org/10.1021/acs.organomet.0c00704Organometallics2021,40,358−369

2Organometallicspubs.acs.org/OrganometallicsArticleinterestingstructuralfeatureliesintheRe{NC(PMePh2)-Scheme4.ReactionsofReCl3(PMePh2)3withArylnitrilesinMe}fragment.TheRe−N−Cchainisalmostlinear(Re(1)−RefluxingTolueneN(1)−C(1),177.7(3)°).ThemultiplebondcharacteroftheReNandCNbondsisreflectedbytheshortRe−N(1.789(3)Å)andN−C(1.302(5)Å)distances.TheRe−Ndistanceisslightlyshorterthanthoseofreportedrheniumazavinylidene18−20,11complexesLnReNCR2,butitisslightlylongerthanthoseofreportedrheniumimidocomplexesLnRe21−24NR.TheC−Ndistanceisslightlylongerthanthoseof18−20,11reportedazavinylidenecomplexes.TheC(1)−Pdistance(1.781(3)Å)isappreciablylongerthanthatofthePCdoublebond(1.712(2)Å),butitisslightlyshorterthanthatoftheP−CH2singlebond(1.808(2)Å)in25Ph2PCH2PPh2C(H)C(O)C6H4-p-Br.Thestructuraldataindicatethatbothresonancestructures8a(A)and8a(B)contributetothestructureof8a,withtheformerbeingmoreimportant(Scheme3).Thus,thecomplexcanbebestdescribedasanazavinylidenecomplex.Scheme3.TwoResonanceStructuresofAzavinylideneComplexReCl3(PMePh2)2{NC(PMePh2)Me}(8a)C6H4Me)}(8c)andReCl3(PMePh2)2{NC(PMePh2)(p-C6H4Br}(8d),respectively.Thestructuresof8b−dhaveallbeenconfirmedbyX-raydiffractionstudies.Themolecularstructureof8cisshowninFigure3,andthoseof8band8daregiveninFiguresS2andComplex8aisdiamagneticandcanbecharacterizedbysolutionNMR.Consistentwiththesolid-statestructure,the31P{1H}NMRspectrumshowedtwosingletsignalsat−3.7and−37.2ppm.The1HNMRspectrumshowedtheCMesignalat2.84ppm(d,J=10.3Hz)andtwoPMesignalsat2.10(t,J=3.6Hz,6H,RePMe)and1.93(d,J=13.6Hz,3H,CPMe)ppm.Inthe13C{1H}NMRspectrum,theNC(Me)signalswereobservedat107.51(d,J=110.09Hz,C)and1.11(CMe)ppm.DuringtheprocessofcollectingNMRdataof8a,wenoticedthatcomplex8ainsolutioncanslowlyrevertbacktoReCl(PMePh)(6).Asindicatedby1HNMR,afterstoring323Figure3.Crystalstructureofcomplex8c.Hydrogenatomsandasolutionpreparedbydissolvingasolidsampleof8ainsolventmoleculesareomittedforclarity.Selectedbondlengths[Å]CD2Cl2for7h,ca.5%of8awasconvertedto6.After2days,andangles[°]:Re(1)−N(1)1.7819(18),N(1)−C(1)1.319(3),ca.25%of8awasconvertedto6.P(1)−C(1)1.779(2),95.70(6),C(1)−N(1)−Re(1)176.48(16),TheazavinylidenecomplexReCl3(PMePh2)2{NC-C(1)−N(1)−P(1)114.35(16).(PMePh2)Me}(8a)isinterestingasitrepresentsthefirstexampleofanazavinylidenecomplexwithaphosphine(PR3)substituent.Reportedazavinylidenecomplexesaremainly26,27S3.Thestructuralfeaturesofcomplexes8b−dderivedfromconfinedtothosewithH,alkyl,andarylsubstituents.Aarylnitrilecomplexesaresimilartothoseof8aderivedfromanfewrheniumazavinylidenecomplexeshavebeenreportedand11,19alkylnitrilecomplex,asindicatedbytheselectedstructuralweregeneratedbyalternativeroutes,forexample,18,28parametersshowninTable1.protonationofnitrilecomplexes,deprotonationofimido20,2930complexesandinsertionofnitriles.Table1.SelectedBondLengths(Å)andAngles(deg)ofTheunexpectedformationofphosphonium-substitutedComplexes7a,7c,and8a−dazavinylidenecomplex8afromthereactionofacetonitrilewithReCl3(PMePh2)3promotedustostudythereactionsofcomplexC−NRe−NRe−N−CC(1)−PReCl3(PMePh2)3witharylnitriles.TreatmentofRe-Cl3(PMePh2)3with2equivofNCPhinrefluxingtoluenefor8b1.314(3)1.779(2)176.17(17)1.787(2)ca.4hproducedtheazavinylidenecomplexRe-8c1.319(3)1.7819(18)176.48(16)1.779(2)Cl3(PMePh2)2{NC(PMePh2)Ph}(8b)(Scheme4).8d1.308(3)1.785(2)177.41(19)1.780(3)Underidenticalreactionconditions,thereactionsof8a1.302(5)1.789(3)179.74(10)1.781(3)ReCl3(PMePh2)3withp-NCC6H4Meandp-NCC6H4Br7a1.139(3)2.039(2)176.2(2)producedcomplexesReCl3(PMePh2)2{NC(PMePh2)(p-7c1.139(4)2.043(3)169.8(3)360https://dx.doi.org/10.1021/acs.organomet.0c00704Organometallics2021,40,358−369

3Organometallicspubs.acs.org/OrganometallicsArticleThesolid-statestructuresaresupportedbythesolutiongeneratedfromthereactionofReCl3(PMePh2)3withalargeNMRdata.Forexample,the31P{1H}NMRspectrumof8bexcessofMeCN.showedtwosingletsignalsat−1.9and−37.0ppm.TheReactionsofReCl3(NCPh)(PPh3)2withPPh3andPMe3.13C{1H}NMRspectrumshowedtheNCsignalat116.07Theaboveexperimentalobservationsindicatethatadditionofppm(d,J=111.5Hz).PMePh2tocoordinatednitrilesismorefavorablefornitrilesAsindicatedby1HNMR,azavinylidenecomplexeswithanelectron-withdrawinggroup.OnemightexpectthattheReCl3(PMePh2)2{NC(PMePh2)(p-C6H4R)}(R=Hbasicityofphosphinesmayalsoaffectthereactivity.Tostudy(8b),Me(8c),andBr(8d))insolutioncanundergopartialtheeffectofphosphineonthenucleophilicadditionreactionsdissociationofPMePh2toformnitrilecomplexesRe-togiveazavinylidenecomplexes,wehavestudiedthereactionsCl3(PMePh2)2(p-NCC6H4R)(R=H(7b),Me(7c),andBrofthereadilyavailablenitrilecomplexReCl3(PPh3)2(NCPh)(7d))(Scheme4).Thedegreeofthephosphinedissociationis(9)withPPh3andPMe3.dependentonthesubstituentsofthearylringoftheThecomplexReCl3(PPh3)2(NCPh)(9)wasfoundtobearylnitriles.Accordingto1HNMRintegrations,afterunreactivetowardPPh3.Theresultisnotsurprisingasithasdissolutionofsolidsamplesof8binCD2Cl2for7h,aboutbeenreportedthatthemonomericrhenium(III)complexes2%of8bwasconvertedto7b.Undersimilarconditions,aboutReCl3(PAr3)2(NCR)(R=MeandPh;Ar=Ph,p-tol,andm-11%of8cwasconvertedto7c,andlessthan1%of8dwastol)canbepreparedbythereactionsofReOCl3(PAr3)2withanexcessofthecorrespondingtriarylphosphinesandanconvertedto7d.Itappearsthatthephosphinesubstituentin14organonitrile.theazavinylidenecomplexesReCl3(PMePh2)2{NC-(PMePh2)(p-C6H4R)}ismoretightlyboundbythenitrileIncontrast,ReCl3(PPh3)2(NCPh)(9)reactedwithPMe3carboninthosecomplexesderivedfromanarylnitrilebearinginstantaneously.ThereactionofReCl3(PPh3)2(NCPh)withPMe3ina1:5molarratiogavetheazavinylidenecomplexanelectron-withdrawinggrouponthearylring.ThenitrilecomplexesReCl(PMePh)(p-NCCHR)(R=ReCl3(PMe3)2{NC(PMe3)Ph}(11),whichcanbe32264isolatedasapurplesolid(Scheme5).Thestructureof11H(7b),Me(7c),andBr(7d))havebeensynthesizedindependentlybythesubstitutionreactionsofRe-Cl(PMePh)(NCMe)(7a)withp-NCCHR(Scheme4).Scheme5.ReactionofReCl3(PPh3)3(NCPh)withPMe332264Thearylnitrilecomplexes(7b−d)havebeencharacterizedbyNMRandelementalanalysis.Thestructureofthecomplex7chasalsobeenconfirmedbyasingle-crystalX-raydiffractionstudy(seeTable1andFigureS1fordetail).ReactionsofReCl3(PMePh2)2(NCAr)andRe-Cl3(PMePh2)2(NCMe)withPMePh2.Itiswell-establishedthatcoordinatedorganonitrileligandcanbeattackedby5,31nucleophiles.ThusitisreasonabletoassumethatinthereactionsofReCl3(PMePh2)3withorganonitrilesazavinylidenecomplexes8wereformedbynucleophilicadditionreactionsoforganonitrilecomplexesReCl3(NCR)(PMePh2)2withfreephosphinePMePh2.Toconfirmthehypothesis,wehavestudiedthereactionsofReCl3(PMePh2)2{p-NCC6H4R)(R=H(7b),Me(7c),andBr(7d))withPMePh2.UponadditionofPMePh2toanorangesolutionofReCl3(PMePh2)2(p-NCC6H5)(7b)indichloromethane,thecolorchangedinstantlyfromorangetopurpleatroomtemperature.The31P{1H}NMRspectrumofthemixtureshowedtwosignalsatcanbereadilyassignedonthebasisoftheNMRdata.The−1.9and−37.0ppm,confirmingthatcomplex7bcanindeed31P{1H}NMRspectrumof11inCDClshowedtwosinglet22beattackedbyexternalphosphinePMePh2togeneratethesignalsat−8.4(CPMe)and−53.7(RePMe)ppm.The1H33azavinylidenecomplexReCl3(PMePh2)2{NC(PMePh2)-NMRspectrumshowedtwoPMe3signalsat2.04(d,J=13.3Ph}(8b).Underthesamereactioncondition,complexes7cHz,9H,CPMe3)and1.37(t,J=3.6Hz,18H,RePMe3)ppm.and7dwerealsofoundtorapidlyreactwithPMePh2togiveInthe13C{1H}NMRspectrum,theNC(Ph)signalwasthecorrespondingazavinylidenecomplexes(Scheme4).observedat111.94ppm(d,J=113.7Hz).SubstitutionreactionsofnitrilecomplexesLnM−NCRwithComplex11waspresumablyformedbynucleophilicphosphinesPR3′togivephosphinecomplexesLnM−PR3′areadditionofPMe3toReCl3(PPh3)2(NCPh)togiveazavinyli-32well-documentedreactions.Inprinciple,thereactionsofdenecomplex10,followedbysequentialsubstitutionoftwoReCl3(PMePh2)2(p-NCC6H4R)(R=H(8b),Me(8c),andBrPPh3ligandswithPMe3(Scheme5).Wehavetriedtodetect(8d))withPMePh2mayalsogivethesubstitutionproducttheintermediatesbyrunningthereactionwithalimitingReCl3(PMePh2)3.However,suchreactionswerenotobserved.amountofPMe3.When1equivofPMe3wasaddedtoaWehavealsostudiedthereactionofRe-suspensionofReCl3(PPh3)2(NCPh)intoluene,thesolidofCl3(PMePh2)2(NCMe)(7a)withPMePh2.ThereactionofReCl3(PPh3)2(NCPh)partiallydissolvedandreactedtogiveapurplesolutioncontainingtwo31PNMRactiveproducts.Onecomplex7awith1.1equivofPMePh2atroomtemperaturewasfoundtomainlygiveReCl3(PMePh2)3formedbyaligandisReCl3(PMe3)2{NC(PMe3)Ph}(11),whichshowed31P{1H}signalsat−7.5and−52.6ppm.Theotheronesubstationreaction.Theresultisconsistentwiththeobservationmentionedabovethattheazavinylidenecomplexdisplayedasingletat−6.5ppmandtwodoubletsat−22.2andReCl3(PMePh2)2{NC(PMePh2)Me}(8a)canonlybe−50.2ppmwithacouplingconstantof324Hz.TheNMR361https://dx.doi.org/10.1021/acs.organomet.0c00704Organometallics2021,40,358−369

4Organometallicspubs.acs.org/OrganometallicsArticledataareconsistentwiththestructureoftheazavinylidenecomplextrans-ReCl3(PPh3)(PMe3){NC(PMe3)Ph}(10′)(Scheme5).The31Psignalsat−6.5,−22.2,and−50.2ppmcanbeassignedtoCPMe3,RePPh3,andRePMe3,respectively.Inagreementwiththeformulation,theinter-mediatecanreactwithexcessofPMe3togive11.Attemptstoobtainapuresampleof10′wereunsuccessful.MagneticPropertiesofReCl3(PR3)2(L)(L=PR3andNCR′)andReCl3(PR3)2{NC(PR3)R′}.Itisnotedthatthed4phosphinecomplexesReCl(PR)andnitrilecomplexes333ReCl3(PR3)2(NCR′)haveatripletgroundstate,whiletheazavinylidenecomplexesReCl3(PR3)2{NC(PR3)R′}haveasingletgroundstate.Thepreferenceinthespinstateofthesecomplexesisunderstandableconsideringtheirelectronicstructures.AsshowninFigure4,theorbitalinteractionofaCd42vRe(III)fragmentReCl3L2withaσ-donorligandL′(e.g.,Figure5.CalculatedenergyprofilesforthesubstitutionreactionofReCl3(PMePh2)3(6)withNCMeandthesubsequentadditionreactionwithPMePh2.Therelativefreeenergiesandelectronicenergies(inparentheses)aregiveninkcal/mol.Figure4.SchematicorbitalinteractiondiagramsforReCl3L2L′andReCl3L2{NC(PR3)R′}derivedfromorbitalinteractionsofaC2vd4Re(III)fragmentReClLwithaσ-donorligandL′andtheligand32Figure6.CalculatedenergyprofilesforthesubstitutionreactionofNC(PR3)R′havingbothσandπfrontierorbitals,respectively.ReCl3(PMePh2)3withp-NCC6H4BrandthesubsequentadditionreactionwithPMePh2.Therelativefreeenergiesandelectronicphosphineornitrile)givessix-coordinatedcomplexesenergies(inparentheses)weregiveninkcal/mol.ReCl3L2L′.ThefourdelectronsintheseRe(III)complexesremaintooccupythethree“t2g”orbitalsleadingtoatripletelectronconfiguration.TheorbitalinteractionofaCd4thetripletparamagneticcomplexReCl(PMePh)(NCMe)2v322Re(III)fragmentReCl3L2withNC(PR3)R′givesazaviny-(7a)followingbyadditionofphosphinetogivethesingletlidenecomplexesReCl3L2{NC(PR3)R′}.SinceNdiamagneticazavinylideneReCl3(PMePh2)2{NC-C(PR3)R′containsbothσ-andπ-donors,azavinylidene(PMePh2)Me}(8a).SincetheadditionreactioninvolvesacomplexesReCl3L2{NC(PR3)R′}are18-electronspeciestriplet-to-singletstateconversion,wehavecalculatedthewithnounpairedelectrons,andhaveasingletgroundstate.energyprofilesforbothsingletandtripletstates.OurComputationalStudies.Theexperimentsdescribedcalculationsconfirmedthat6and7ahaveatripletgroundaboveshowthatphosphinescouldaddtocoordinatednitrilesstate,whileazavinylidenecomplex8ahasasingletgroundstatetogiveazavinylidenecomplexes,thefeasibilityofwhichis(Figure5).Thecalculatedstructuralparametersof7aand8adependentonphosphinesaswellasorganonitriles.ToverifyareingoodagreementwiththeexperimentalX-raycrystaltheproposedreactionmechanismandtohaveabetterstructuraldata(seeFigureS4fordetail).understandingoftheexperimentalobservations,wehaveAsshowninFigure5,thesubstitutionreactionofcalculatedtheenergyprofilesforthereactionsofRe-ReCl3(PMePh2)3(6)withNCMetogiveRe-Cl3(PMePh2)3(6)withNCMe(Figure5)andp-NCC6H4RCl3(PMePh2)2(NCMe)(7a)andPMePh2wasfoundtobe(R=H(FigureS6),Me(FigureS7),andBr(Figure6))andthermodynamicallyalmostneutralorslightlyendergonic(bythereactionsofReCl3(PPh3)2(NCPh)(9)withPMe3(Figure0.8kcal/mol).TheadditionofPMePh2to7atogivethe7a)andPPh3(Figure7b).ThecalculatedprofilesareingoodazavinylidenecomplexReCl3(PMePh2)2{NC(PMePh2)-agreementswiththeexperimentalobservations(seeSchemeMe}(8a)wasalsofoundtobealmostthermodynamicallyS1intheSupportingInformationfordetails).neutralorslightlyendergonic(by0.2kcal/mol).ThefavorableLetusfirstcommentonthemainfeaturesoftheenergytransitionstatefortheadditionreactionof7atogive8aisprofilesbyusingtheprofilecalculatedforthereactionofTS7a(t),whichcorrespondstoatripletstate.Triplet-to-singletReCl3(PMePh2)3(6)withNCMeasanexample(Figure5).stateconversionoccursafterthetransitionstateisreached.ThereactionwasproposedtoproceedbyinitialformationofTheadditionreactionhasabarrierof22.3kcal/mol,362https://dx.doi.org/10.1021/acs.organomet.0c00704Organometallics2021,40,358−369

5Organometallicspubs.acs.org/OrganometallicsArticleReCl3(PMePh2)2(p-NCC6H4R)(R=H,Me,andBr)(7b−d)withPMe2Phtogive6arethermodynamicallyunfavorablewhiletheadditionreactionstogiveazavinylidenes8arethermodynamicallyfavorableoralmostneutral,thereactionsofReCl3(PMePh2)2(p-NCC6H4R)(R=H,Me,andBr)(7b−d)withPMe2Phgivethecorrespondingazavinylidenecomplexes,ratherthanReCl3(PMePh2)3(6).WeobservedexperimentallythatReCl3(PPh3)2(NCPh)canreactwithPMe3togiveazavinylidenecomplex11viaintermediate10,butitdoesnotreactwithPPh3(Scheme5).ThecalculatedenergyprofilesforthereactionsofReCl3(PPh3)2(NCPh)(9)withPMe3(Figure7a)andPPh3(Figure7b)suggestthattheexperimentalobservationsarealsothermodynamicallycontrolledinorigin.AsshowninFigure7a,thereactionofPPMe3withReCl3(PPh3)2(NCPh)(9)togivetheazavinylidenecomplexReCl3(PPh3)2{NC(PMe3)Ph}(10)isathermodynamicallyfavoredprocess.AsshowninFigure7b,boththeadditionofPPh3toReCl3(PPh3)2(NCPh)(9)togivetheazavinylidenecomplexReCl3(PPh3)2{NC(PPh3)Ph}(13)andthesubstitutionreactionofReCl3(NCPh)(PPh3)2(9)withPPh3togiveReCl3(PPh3)3(14)arethermodynamicallyunfavorable.Thecomputationalstudiesrevealthatthethermodynamicsandthekineticsofnucleophilicadditionreactionarestronglyaffectedbyphosphines.Forexample,theadditionofPMe3toReCl3(PPh3)2(NCPh)(9)togivetheazavinylidenecomplexReCl3(PPh3)2{NC(PMe3)Ph}(10)wasfoundtobethermodynamicallyfavoredby4.3kcal/molwithabarrierof14.6kcal/mol,whiletheanalogousreactionwithPPh3isthermodynamicallyunfavoredby13.2kcal/molwithabarrierFigure7.Calculatedreactionprofileforthesubstitutionandadditionof26.8kcal/mol(Figure7).TheobservedphosphineeffectreactionsofReCl3(PPh3)2(NCPh)withPMe3(top,(a))andPPh3correlateswellwiththebasicityofphosphines,whileasteric(bottom,(b)).Therelativefreeenergiesandelectronicenergies(inparentheses)weregiveninkcal/mol.effectalsoplaysarole.Theadditionreactionisthermodynami-callymorefavorableandkineticallymorefeasiblewhenthephosphineismoreelectron-donatingandlessstericallyconfirmingthatthenucleophilicadditionreactioniskineticallydemanding.Theeffectofnitrilesonthermodynamicsandfeasible.thekineticsoftheadditionreactionwasalsonoted.Kinetically,TheenergyprofilescanhelpustounderstandexperimentaltheadditionofphosphinetoalkylnitrileMeCN(Figure5)isobservations.TheprofileinFigure5providesanexplanationlessfavorablethanthattoarylnitriles(Figure6).ontheexperimentalobservationsassociatedwiththeThermodynamically,additionofphosphinetoalkylnitrilesubstitutionreactionofNCMewithReCl3(PMe2Ph)3(6)MeCNisslightlylessfavorablethantoPhCN.Foradditionandthesubsequentreactionof7awithPMePh2.Sincethereactionsofarylnitriles,theonewithanelectron-withdrawingreactionsof6withMeCNtogive7aand8aareslightlygroupismorefavorable.thermodynamicallyunfavorablewithasimilarendothermicity,ThesubstitutionreactionsofReCl2(PR3)3(NCR′)withalargeamountofnitrilesareneededtoshiftthereactionphosphinesarealsoaffectedbyphosphinesandnitriles.Fortowardproducts,andundersuchconditions,thereactionexample,thesubstitutionreactionofReCl3(PPh3)2(NCPh)wouldgenerateamixtureoftheazavinylidenecomplex(9)withPMe3togiveReCl3(PPh3)3(PMe3)(12)andNCPhReCl3(PMePh2)2{NC(PMePh2)Me}(8a)andnitrilewasfoundtobethermodynamicallyfavoredby1.4kcal/mol,complex7a.Asthereactionof7awithPMePh2togive6iswhiletheanalogousreactionwithPPh3isthermodynamicallythermodynamicallymorefavorablethanthattogive8a,unfavoredby15.3kcal/mol(Figure7).Thephosphineeffectcomplex7areactedwithPMePh2togive6,ratherthan8a.canberelatedtothestericandelectronicpropertiesoftheTheenergyprofilesforreactionsofReCl3(PMePh2)3(6)phosphineligands.Thereactionisthermodynamicallymorewithp-NCC6H4R(R=H(FigureS6),Me(FigureS7),andBrfavorablewhenaphosphineisstericallylessdemandingand(Figure6))provideanexplanationontheexperimentalelectronicallymoredonating.AstericeffectmightbethemajorobservationsassociatedwiththereactionsofReCl3(PMePh2)3factorcausingthesubstitutionreactionof(6)witharylnitrilesp-NCC6H4R(R=H,Me,andBr)andtheReCl3(PPh3)2(NCPh)(9)withPPh3togiveReCl3(PPh3)3reactionsofReCl3(PMePh2)2(p-NCC6H4R)(R=H,Me,andtobesignificantlymoreendothermic.TheeffectofnitrilesonBr)(7b−d)withPMe2Ph.SincethereactionsofRe-thereactionsarealsonotable.Forexample,thesubstitutionCl3(PMePh2)3(6)witharylnitrilesArCNtogivenitrilereactionofReCl3(PMePh2)2(NCMe)(7a)withPMe2Phtocomplexes7andazavinylidenecomplexes8arethermody-giveReCl3(PMePh2)3(6)andMeCNisslightlyfavoredby0.8namicallyfavorable,thereactionsofReCl3(PMePh2)3(6)withkcal/mol(Figure5),whilethereactionofarylnitrilearylnitrilescanproceedwithouttheneedofusinganexcesscomplexesReCl3(PMePh2)2(NCAr)withPMe2Phisthermo-amountofarylnitriles.Sincesubstitutionreactionsofdynamicallyunfavoredbyca.4kcal/mol(Figures6,S6,and363https://dx.doi.org/10.1021/acs.organomet.0c00704Organometallics2021,40,358−369

6Organometallicspubs.acs.org/OrganometallicsArticle1HNMR).Thedarkgreencrystalsof8acanbepickedupbyhandforS7).Theobservationsseemcloselyrelatedtothedifferenceinthebindingabilityofthealkylandarylnitriles.WenoticedthatX-raydiffractionstudyandelementalanalysisofthecrystalmixture.CharacterizationDataofReCl(PMePh)(NCMe)(7a).1HNMRthecalculatedRe−NbondinReCl3(PMePh2)2(NCMe)is3222.020Å,whilethatinReCl3(PMePh2)2(NCPh)is2.001Å,(400MHz,CDCl3)δ57.26(s,3H,NCMe),14.38(d,J=7.5Hz,8H,suggestingthatNCPhisabetterligandforReCl(PMePh)Ph),9.35(t,J=7.5Hz,4H,Ph),9.13(t,J=7.5Hz,8H,Ph),0.82(s,3226H,PMePh).13C{1H}NMR(101MHz,CDCl)δ215.19(s,thanMeCN.Thedifferenceinthebindingabilityofthealkyl2333NCMe),156.89(s,NCMe),135.20(s,Ph),133.11(s,Ph),126.53(s,andarylnitrilesisalsoreflectedbyNBOanalysis,showingPh),80.06(s,Ph).Anal.CalcdforC28H29Cl3NP2Re:C,45.82;H,thattheMayer−MullikenbondordercalculatedfortheRe−N3.98;N,1.91.Found:C,45.61;H,4.13;N,2.13orC,45.95;H,4.15;bondinReCl3(PMePh2)2(NCMe)is0.4025,whiletheindexN,2.12.calculatedfortheRe−NbondinReCl3(PMePh2)2(NCPh)isCharacterizationDataofReCl3{NC(PMePh2)Me)}(PMePh2)2(8a).31P{1H}NMR(162MHz,CDCl)δ−3.67(s),−37.19(s).1H0.4274.NCPhisprobablyabetterligandthanNCMebecause22NCPhisabetterπ-acceptingligand,resultinginastrongerNMR(400MHz,CD2Cl2)δ7.79−6.93(m,30H,Ph),2.84(d,J=back-donationinteractionfromthemetalcentertotheligand.10.3Hz,3H,NC−Me),2.10(t,J=3.6Hz,6H,PMePh2),1.93(d,J=13.6Hz,3H,[PMePh]+).13C{1H}NMR(101MHz,CDCl)δ222143.31−122.72(m,Ph),107.51(d,J=110.09Hz,ReN=C),12.51(t,J=16.0Hz,PMePh),8.84(d,J=60.6Hz,[PMePh]+),1.11(s,■CONCLUSIONS22WehavedemonstratedthatacoordinatedorganonitrileligandsNC−Me).Anal.CalcdforC41H42Cl3NP3Re:C,52.71;H,4.53;N,1.50.Found:C,52.28;H,4.43;N,1.54.incertainrhenium(III)complexescanbeattackedbyReCl3(PMePh2)2{NC(PMePh2)Ph}(8b).Toasuspensionofphosphinestogiverheniumphosphonium-azavinylideneReCl3(PMePh2)3(200mg,0.224mmol)intoluene(8.0mL)wascomplexes.TheazavinylidenecomplexesRe-injectedbenzonitrile(0.12mL,1.12mmol).ThereactionmixturewasCl3(PMePh2)2{NC(PMePh2)Ar}(Ar=Ph,p-C6H4Me,refluxedforca.4htogiveadarkpurplesolution.Thereactionp-C6H4Br,andMe)canbeobtainedbythereactionsofmixturewascooleddowntoroomtemperature.ThesolventoftheReCl3(PMePh2)3withorganonitrilesNCAr,orthereactionsofreactionmixturewasremovedinvacuotogiveadarkpurpleresidue.ReCl3(PMePh2)3(NCAr)withPMePh2.ThecomplexRe-Theresiduewasredissolvedindichloromethane(2.0mL)togiveaCl3(PMe3)2{NC(PMe3)R}wasproducedinthereactiondarkpurplesolution.AdarkpurplesolidwasprecipitatedoutafterofReCl3(PPh3)2(NCPh)withPMe3.Computationalstudyaddingdiethylether(10.0mL)tothedarkpurplesolution.Thissolidshowsthatthereactionsarethermodynamicallycontrolled.wasrecrystallizedwithdichloromethane(1.0mL)anddiethylether(5.0mL)togivedarkpurplecrystalsof8b.Yield:72.4mg,32.4%.Bothexperimentalandcomputationalstudiessuggestthat31P{1H}NMR(162MHz,CDCl)δ−1.89(s),−37.01(s).1Hnucleophilicadditionofphosphinestocoordinatednitrilesis22NMR(400MHz,CD2Cl2)δ7.77−6.76(m,35H,Ph),2.03(m,9H,morefavorablefornitrileswithanelectron-withdrawinggroup+131PMePh2and[PMePh2]).C{H}NMR(100MHz,CD2Cl2)δandformorebasicphosphines.134.92−123.30(m,Ph),116.07(d,J=111.5Hz,ReN=C),12.27(t,J=16.5Hz,PMePh),11.17(d,J=60.6Hz,[PMePh]+).Anal.22■EXPERIMENTALSECTIONCalcdforC46H44Cl3NP3Re:C,55.45;H,4.45;N,1.41.Found:C,55.60;H,4.37;N,1.38.GeneralConsiderations.AllmanipulationswerecarriedoutReCl3(PMePh2)2(NCPh)(7b).ToasolutionofRe-underanitrogenatmosphereusingstandardSchlenktechniquesCl3(PMePh2)2(NCMe)(7a;500mg,0.583mmol)intoluene(10.0unlessotherwisestated.Literaturemethodswereusedforthe3435mL)wasinjectedbenzonitrile(0.30mL,2.91mmol).ThereactionpreparationofReCl3(PMePh2)3andReCl3(PPh3)2(NCPh).mixturewasrefluxedforca.6h.ThereactionmixturewascooledDiethylether,n-hexane,andtetrahydrofuran(THF)weredistilleddowntoroomtemperature,andthenconcentratedbyreducingitsundernitrogenfromsodiumbenzophenone.Dichloromethanevolumebyapproximatelyhalfinvacuotogiveanorangeprecipitate.(DCM)andacetonitrile(MeCN)weredistilledundernitrogenTheorangeprecipitatewascollectedbyfiltration,washedwithdiethylfromcalciumhydride.AllotherreagentswerepurchasedfromSigma-11131ether(3×10mL),andair-dried.Yield:400mg,58.0%.HNMRAldrichChemicalCo.andusedasreceived.H,C{H},and311(400MHz,CDCl3)δ14.69(d,J=7.5Hz,8H,Ph),11.39(t,J=7.7P{H}NMRspectrawerecollectedonaBrukerARX-4001131Hz,2H,p-NCC6H5),9.26(t,J=7.5Hz,4H,Ph),9.08(t,J=7.5Hz,spectrometer(400MHz).HandC{H}chemicalshiftsare3118H,Ph),4.39(t,J=7.7Hz,1H,p-NCC6H5),4.11(d,J=7.6Hz,2H,relativetoTMS,andP{H}chemicalshiftsarerelativeto85%p-NCC6H5),0.45(s,6H,PMePh2).H3PO4.FormationofReCl(PMePh){NC(PMePh)Me)}(8a)ReCl3(PMePh2)2{NC(PMePh2)(p-C6H4Me)}(8c).Toa3222yellowsuspensionofReCl(PMePh)(250mg,0.280mmol)inandReCl3(PMePh2)2(NCMe)(7a)fromtheReactionof323ReCl3(PMePh2)3withAcetonitrile.Ayellowsuspensionoftoluene(8.0mL)wasadded4-methylbenzonitrile(65.6mg,0.560ReCl3(PMePh2)3(500mg,0.600mmol)inacetonitrile(8.0mL)mmol).Thereactionmixturewasrefluxedforca.6htogiveadarkwasrefluxedforca.6htogiveadarkgreensolution.Thereactionpurplesolution.Thereactionmixturewascooleddowntoroommixturewascooleddowntoroomtemperature.Thevolumeofthetemperature.Thesolventofthereactionmixturewasremovedinreactionmixturewasreducedtohalfinvacuotogenerateanorangevacuotogiveadarkpurpleresidue.Theresiduewasredissolvedinprecipitate.Afteradditionofdiethylether(10.0mL)tothedichloromethane(2.0mL)togiveadarkpurplesolution.Adarkconcentratedreactionmixture,theorangesolidwascollectedbypurplesolidwasprecipitatedoutbyaddingdiethylether(10.0mL)tofiltration,washedwithdiethylether(3×10.0mL),anddriedtogivethedarkpurplesolution.ThissolidwasrecrystallizedwithpuresamplesofReCl3(NCMe)(PMePh2)2(7a,yield:192mg,dichloromethane(1.5mL)anddiethylether(7.0mL)togivedarkpurplecrystalsof8c.Yield:71.9mg,25.4%.31P{1H}NMR(16243.5%).ThedarkgreenfiltratewascollectedandconcentratedbyMHz,CDCl)δ−0.53(s),−35.51(s).1HNMR(400MHz,reducingitsvolumebyapproximatelyhalf.Diethylether(10.0mL)22waslayeredontopoftheconcentrateddarkgreenfiltratetogiveaCD2Cl2)δ7.62−6.72(m,34H,Ph),2.49(s,3H,p-NCC6H4Me),2.03crystallinedarkgreensolidmixedwithanorangesolid.Thissolid(t,J=3.3Hz,6H,RePMePh2),1.98(d,J=13.9Hz,3H,CPMePh2).13C{1H}NMR(101MHz,CDCl)δ135.13−123.41(m,Ph),mixturewasrecrystallizedwithdichloromethane(1.0mL)anddiethyl22ether(5.0mL)togive76.2mg(13.6%)ofacrystallinesolid116.44(d,J=112.11Hz,ReN=C)19.63(s,p-NCC6H4Me),12.29composedofmainlydarkgreencrystalsofReCl3(PMePh2)2{N(t,J=16.5Hz,RePMePh2),11.11(d,J=61.61Hz,CPMePh2).Anal.C(PMePh2)Me)}(8a)andasmallamountofyellowmicrocrystalsofCalcdforC41H42Cl3NP3Re:C,52.71;H,4.53;N,1.50.Found:C,ReCl3(NCMe)(PMePh2)2(7a)(inca.3:1molarratioasindicatedby52.28;H,4.43;N,1.54.364https://dx.doi.org/10.1021/acs.organomet.0c00704Organometallics2021,40,358−369

7Organometallicspubs.acs.org/OrganometallicsArticleReCl(PMePh)(p-NCCHMe)(7c).ToasolutionofRe-(t,J=3.6Hz,18H,RePMe).13C{1H}NMR(100MHz,CDCl):δ3264322Cl3(PMePh2)2(NCMe)(7a;500mg,0.583mmol)intoluene(10.0127.52(s,Ph),126.27(s,Ph),124.88(s,Ph),111.94(d,J=113.7mL)wasadded4-methylbenzonitrile(341mg,2.91mmol).TheHz,ReN=C),12.84(d,J=55.7Hz,CPMe3),11.93(t,J=14.9Hz,reactionmixturewasrefluxedforca.8h.ThereactionmixturewasRePMe3).Anal.CalcdforC16H32Cl3NP3Re:C,30.80;H,5.17;N,cooleddowntoroomtemperatureandthenconcentratedbyreducing2.25.Found:C,30.56;H,5.29;N,2.23orC,30.14;H,5.27;N,2.14.itsvolumebyabouthalfinvacuotogiveanorangeprecipitate.TheX-rayCrystallography.Thecrystalsof8a,7a·NCMe,8b,8c·orangeprecipitatewascollectedbyfiltration,washedwithdiethyl0.5CH2Cl2·0.5C4H10O,7c·CH2Cl2,and8d·0.15CH2Cl2·0.85C4H10Oether(3×10.0mL),andair-dried.Yield:137mg,29.0%.1HNMRweregrownbyappropriatesolventdiffusionofmethylenechloride(400MHz,CD2Cl2)δ14.73(d,J=7.6Hz,8H,Ph),11.41(d,J=7.7andTHFunderaninertatmosphereofnitrogenatroomtemperature.Hz,2H,p-NCC6H4Me),9.26(t,J=7.4Hz,4H,Ph),9.15−9.03(m,AllspecimensweremountedinairwithMiTeGenLoops.Intensity8H,Ph),8.93(s,3H,p-NCC6H4Me),3.39(d,J=8.2Hz,2H,p-131datawerecollectedonaRigaku-OxfordDiffractionSuperNovaAtlasNCC6H4Me),0.70(s,6H,PMePh2).C{H}NMR(101MHz,CCDdiffractometerat100K.DiffractiondatawereprocessedusingCD2Cl2)δ233.32(s,Re−NC),168.92(s,Ph),134.87(s,Ph),theCrysAlisProsoftware(version1.171.35.19).Empiricalabsorption133.66(s,Ph),126.67(s,Ph),119.75(s,Ph),72.70(s,Ph),10.61(s,correctionswereperformedusingsphericalharmonics,implementedp-NCC6H4Me).Anal.CalcdforC34H33Cl3NP2Re·H2O:C,49.31;H,4.26;N,1.69.Found:C,49.75;H,4.23;N,1.65.intheSCALE3ABSPACKscalingalgorithmintheCrysAlisProReCl3(PMePh2)2{NC(PMePh2)(p-C6H4Br)}(8d).Toayel-softwaresuite.StructuresolutionandrefinementforallcompoundslowsuspensionofReCl3(PMePh2)3(200mg,0.224mmol)intoluenewereperformedusingtheOlex2softwarepackage(whichembedded(8.0mL)wasadded4-bromobenzonitrile(81.5mg,0.448mmol).SHELXL).Allofthestructuresweresolvedbydirectmethods,Themixturewasrefluxedforca.6htogiveadarkpurplesolution.expandedbydifferenceFouriersynthesesandrefinedbyfullmatrixleast-squaresonF2.Allthenon-hydrogenatomswererefinedThereactionmixturewascooleddowntoroomtemperature.Thesolventofthereactionmixturewasremovedinvacuotogiveadarkanisotropicallywitharidingmodelforthehydrogenatoms.Furtherpurpleresidue.Theresiduewasredissolvedindichloromethane(2.0crystallographicdetailsaresummarizedinTableS1.mL)togiveadarkpurplesolution.AdarkpurplesolidwasThemolecularstructuresofthesecomplexesareshowninFiguresprecipitatedoutbyaddingdiethylether(10mL)tothedarkpurpleS1−S6.Crystallographicdatahavebeendepositedwiththesolution.Thissolidwasrecrystallizedwithdichloromethane(1.0mL)CambridgeCrystallographicDataCentre.CCDC1994609(8a),anddiethylether(5mL)togivedarkpurplecrystals,whichwere1994614(7a·NCMe),1994617(8b),1994618(8c·0.5CH2Cl2·collectedbyfiltration,driedundervacuum.Yield:107mg,44.5%.0.5C4H10O),1994619(7c·CH2Cl2)and1994627(8d·0.15CH2Cl2·31P{1H}NMR(162MHz,CDCl)δ−1.71(s),−37.41(s).1H220.85C4H10O)containcrystallographicdataforthispaper.ThesedataNMR(400MHz,CD2Cl2)δ7.80−6.69(m,34H,Ph),2.21−1.93(m,canbeobtainedfreeofchargefromTheCambridgeCrystallographic9H,RePMePhandCPMePh).13C{1H}NMR(100MHz,CDCl)δ2222DataCentreviawww.ccdc.cam.ac.uk/data_request/cif.134.90−117.18(m,Ph),114.78(d,J=113.12Hz,ReN=C)12.17ComputationalDetail.DFTcalculationswereperformedusing(t,J=16.7Hz,RePMePh2),10.98(d,J=61.61Hz,CPMePh2).Anal.theGaussian09D.01package.36AllthestructureswereoptimizedCalcdforC46H43BrCl3NP3Re·Et2O:C,52.52;H,4.65;N,1.22.usingtheM06functional37withthebasissetLanl2dzforRe38and6-Found:C,52.58;H,4.33;N,1.33.3931G*formaingroupatoms.Polarizationfunctions(ζf=0.869)ReCl3(PMePh2)2(p-NCC6H4Br)(7d).ToasolutionofRe-40wereaddedforRe.Acorrectionof−2.6kcal/molwasmadeforCl3(PMePh2)2(NCMe)(7a;500mg,0.583mmol)intoluene(10.0two-to-one(or2.6kcal/molforone-to-two)transformations.mL)wasadded4-bromobenzonitrile(530mg,2.91mmol).TheFrequencycalculationswereperformedtoverifytheoptimizedreactionmixturewasrefluxedforca.8handthencooleddowntoroomtemperature.Thereactionmixturewasconcentratedbystructuresaslocalminimaortransitionstatesandtoobtainrelativereducingitsvolumeinvacuotohalftogiveanorangeprecipitate.Gibbsfreeenergies(withintheharmonicapproximation)at298.15K.Theorangeprecipitatewasfilteredoutunderair.ItwaswashedwithTransitionstatestructureswereconfirmedtoconnectappropriatediethylether(3×10.0mL)andair-dried.Yield:178mg,34.9%.1Hreactantsorproductsbyintrinsicreactioncoordinate(IRC)41NMR(400MHz,CDCl3)δ14.65(d,J=7.4Hz,8H,Ph),11.64(d,Jcalculations.SolventeffectsofMeCN(Figure5)ortoluene=8.0Hz,2H,p-NCC6H4Br),9.29(t,J=7.5Hz,4H,Ph),9.07(t,J=(Figures6and7)accordingtotheexperimentalconditionwere427.6Hz,8H,Ph),4.13(d,J=8.0Hz,2H,p-NCC6H4Br),0.13(s,6H,consideredusingtheSMDmodeattheM06/6-311++G**levelPMePh).13C{1H}NMR(100MHz,CDCl)δ251.16(s,Re−N23withLanl2dzpluspolarizationfunctionsforRe.C),150.72(s,Ph),135.43(s,Ph),133.32(s,Ph),130.55(s,Ph),126.32(s,Ph),65.35(s,Ph).CalcdforC33H30BrCl3NP2Re:C,45.30;■H,3.46;N,1.60.Found:C,45.10;H,3.65;N,1.54orC,45.02;H,ASSOCIATEDCONTENT3.65;N,1.57.*sıSupportingInformationReCl3(PMe3)2{NC(PMe3)Ph}(11).ToasuspensionofTheSupportingInformationisavailablefreeofchargeatReCl3(PPh3)2(NCPh)(9,100mg,0.109mmol)intoluene(8.0https://pubs.acs.org/doi/10.1021/acs.organomet.0c00704.mL)wasinjectedtrimethylphosphine(0.10mL,0.109mmol).TheyellowsolidofReCl3(NCPh)(PPh3)2partiallydissolvedandtheNMRspectra;crystallographicdataofthecomplexes7a,reactionmixtureimmediatelychangedcolorfrompale-yellowtodark7c,8a−d;energyprofilesofthecomputationalstudypurple.Thereactionmixturewasstirredat60°Cfor30mintogivea(PDF)purplesolutionwithasmallamountyellowsolid(presumablyunreactedstartingmaterial).ThereactionmixturewascooleddownCartesiancoordinates(XYZ)toroomtemperatureandfilteredtogiveadarkpurplesolution.Thedarkpurplesolutionwasdriedinvacuotogiveadarkpurpleresidue.Thedarkpurpleresiduewasredissolvedindichloromethane(1.0mL)AccessionCodestogiveadarkpurplesolution.Diethylether(8.0mL)wasaddedtoCCDC1994609,1994614,1994617−1994619,and1994627thedarkpurplesolutiontoprecipitateadarkpurplesolid.Thedarkcontainthesupplementarycrystallographicdataforthispaper.purplesolidwasseparatedbyfiltration.AcrystallinesolidwasThesedatacanbeobtainedfreeofchargeviawww.ccdc.ca-obtainedbyrecrystallizationwithdichloromethane(1.0mL)and311m.ac.uk/data_request/cif,orbyemailingdata_request@ccdc.diethylether(5.0mL).Yield:24.9mg,36.7%.P{H}NMR(162MHz,CDCl)δ−8.42(s),−53.68(s).1HNMR(400MHz,cam.ac.uk,orbycontactingTheCambridgeCrystallographic22CD2Cl2):δ7.35(t,J=7.7Hz,2H,Ph),7.04(d,J=7.9Hz,2H,Ph),DataCentre,12UnionRoad,CambridgeCB21EZ,UK;fax:6.97(t,J=7.4Hz,1H,Ph),2.04(d,J=13.3Hz,9H,CPMe3),1.37+441223336033.365https://dx.doi.org/10.1021/acs.organomet.0c00704Organometallics2021,40,358−369

8Organometallicspubs.acs.org/OrganometallicsArticle■A.;Batchelor,R.J.;Einstein,F.W.B.GenerationandReactivityofAUTHORINFORMATIONCp*W(NO)(CH2SiMe3)H,a16-Valence-ElectronAlkylHydrideCorrespondingAuthorsComplex.Organometallics1995,14,2543−2555.IanD.Williams−DepartmentofChemistry,TheHongKong(4)Kossoy,E.;Diskin-Posner,Y.;Leitus,G.;Milstein,D.SelectiveUniversityofScienceandTechnology,Kowloon,HongKong;AcceptorlessConversionofPrimaryAlcoholstoAcetalsandorcid.org/0000-0001-8743-401X;Email:chwill@ust.hkDihydrogenCatalyzedbytheRuthenium(II)ComplexRu-ZhenyangLin−DepartmentofChemistry,TheHongKong(PPh3)2(NCCH3)2(SO4).Adv.Synth.Catal.2012,354,497−504.UniversityofScienceandTechnology,Kowloon,HongKong;(5)(a)Kukushkin,V.Y.;Pombeiro,A.J.L.Metal-mediatedandorcid.org/0000-0003-4104-8767;Email:chzlin@ust.hkmetal-catalyzedhydrolysisofnitriles.Inorg.Chim.Acta2005,358,1−GuochenJia−DepartmentofChemistry,TheHongKong21.(b)Pombeiro,A.J.L.;Kukushkin,V.Y.ReactivityofCoordinatedUniversityofScienceandTechnology,Kowloon,HongKong;Nitriles.InComprehensiveCoordinationChemistryII;McCleverty,J.A.,Meyer,T.J.,Eds.;Pergamon:Oxford,2003;pp639−660.orcid.org/0000-0002-4285-8756;Email:chjiag@ust.hk(c)Kukushkin,V.Y.;Pombeiro,A.J.L.AdditionstoMetal-ActivatedAuthorsOrganonitriles.Chem.Rev.2002,102,1771−1802.(d)Michelin,R.A.;Mozzon,M.;Bertani,R.Reactionsoftransitionmetal-coordinatedKui-FunLee−DepartmentofChemistry,TheHongKongnitriles.Coord.Chem.Rev.1996,147,299−338.UniversityofScienceandTechnology,Kowloon,HongKong;(6)(a)Guo,H.;Fan,Y.C.;Sun,Z.;Wu,Y.;Kwon,O.Phosphineorcid.org/0000-0003-1825-2671Organocatalysis.Chem.Rev.2018,118,10049−10293.(b)Wang,Z.;TilongYang−DepartmentofChemistry,TheHongKongXu,X.;Kwon,O.Phosphinecatalysisofalleneswithelectrophiles.UniversityofScienceandTechnology,Kowloon,HongKong;Chem.Soc.Rev.2014,43,2927−2940.(c)Fan,Y.C.;Kwon,O.orcid.org/0000-0002-9126-8840Advancesinnucleophilicphosphinecatalysisofalkenes,allenes,Long-YiuTsang−DepartmentofChemistry,TheHongKongalkynes,andMBHADs.Chem.Commun.2013,49,11588−11619.UniversityofScienceandTechnology,Kowloon,HongKong(7)Forexamples,see(a)Zhang,C.;Wang,Y.;Hou,G.;Ding,W.;HermanH.Y.Sung−DepartmentofChemistry,TheHongZi,G.;Walter,M.D.Experimentalandcomputationalstudiesonathree-membereddiphosphidothoriummetallaheterocycle[η5-1,3-KongUniversityofScienceandTechnology,Kowloon,Hong(MeC)CH]Th[η2-P(2,4,6-iPrCH)].DaltonTrans.2019,48,Kong;orcid.org/0000-0002-3370-033232532236226921−6930.(b)Roering,A.J.;Leshinski,S.E.;Chan,S.M.;Completecontactinformationisavailableat:Shalumova,T.;MacMillan,S.N.;Tanski,J.M.;Waterman,R.https://pubs.acs.org/10.1021/acs.organomet.0c00704InsertionReactionsandCatalyticHydrophosphinationbyTriamido-amine-SupportedZirconiumComplexes.Organometallics2010,29,AuthorContributions2557−2565.(c)d’Arbeloff-Wilson,S.E.;Hitchcock,P.B.;Nixon,J.†K.F.L.andT.Y.contributedequallytothiswork.F.;Kawaguchi,H.;Tatsumi,K.[2+2]Cyclo-additionreactionsofbis-pentamethylcyclopentadienylzirconiummetalcomplexescontain-Notestingterminalchalcogenideligandswiththephospha-alkynePCBu.Theauthorsdeclarenocompetingfinancialinterest.Syntheses,crystalandmolecularstructuresofthefourcomplexes[Zr(η5-(CMe)(SC(tBu)P))],[Zr(η5-(CMe)(SeC(tBu)552552P))],[Zr(η5-(CMe)(SC(tBu)=PSe))]and[Zr(η5-(CMe)(SC-■ACKNOWLEDGMENTS552552(tBu)=PC(Ph)N))].J.Organomet.Chem.2003,672,1−10.ThisworkwassupportedbytheHongKongResearchGrants(d)Segerer,U.;Blaurock,S.;Sieler,J.;Hey-Hawkins,E.InsertionCouncil(ProjectNos.16321516,16308719and16302418)ofAcetonitrileintotheZr-PBondof[Cp°2ZrCl(PHCy)](Cy=andNaturalScienceFoundationofChina(ProjectNo.5Cyclohexyl,Cp°=η-C5EtMe4)FollowedbyPHCyEliminationTo21971218)Give[Cp°2(Cl)Zr(μ-NCMe-CMeN)Zr(Cl)Cp°2].Organometal-lics1999,18,2838−2842.(e)Hou,Z.;Breen,T.L.;Stephan,D.W.■REFERENCESFormationandreactivityoftheearlymetalphosphidesand(1)(a)McCleverty,J.A.;Meyer,T.J.,Eds.ComprehensivephosphinidenesCp*2ZrPR,Cp*2Zr(PR)2,andCp*2Zr(PR)3.CoordinationChemistryII;Elsevier-PergamonPress:NewYork,Organometallics1993,12,3158−3167.2003.(b)Crabtree,R.H.,Mingos,D.M.P.,Eds.Comprehensive(8)(a)Mahieu,A.;Igau,A.;Jaud,J.;Majoral,J.-P.MaskedOrganometallicChemistryIII;Elsevier:Oxford,2007.IminophosphideAnion:SynthesisandVersatileReactivity.Organo-(2)Babon,J.C.;Esteruelas,M.A.;Fernández,I.;López,A.M.;́metallics1995,14,944−952.(b)Igau,A.;Dufour,N.;Mahieu,A.;Oñate,E.ReductionofBenzonitrilesviaOsmium-AzavinylideneMajoral,J.P.SyntheseundReaktivitatvonMë2P(ZrCp2Cl)=NAr,IntermediatesBearingNucleophilicandElectrophilicCenters.Inorg.demerstenIminozirconiophosphoran,einemmaskiertenIminophos-Chem.2019,58,8673−8684.phid.Angew.Chem.1993,105,76−78.(3)ForadditionalexamplesofinsertionofnitritrilestoMFHbonds(9)(a)Zhang,C.;Hou,G.;Zi,G.;Ding,W.;Walter,M.D.ABase-togiveazavinylidenecomplexes,see(a)Dai,Q.X.;Seino,H.;FreeTerminalActinidePhosphinideneMetallocene:Synthesis,Mizobe,Y.Tungsten(II)AlkylimidoComplexesfromInsertionofStructure,Reactivity,andComputationalStudies.J.Am.Chem.Soc.NitrilesintoTungstenHydride:AlkylideneamidoIntermediateStage2018,140,14511−14525.(b)Wang,Y.;Zhang,C.;Zi,G.;Ding,W.;andNitreneGroupTransfertoIsocyanide.Organometallics2012,31,Walter,M.D.Preparationofapotassiumchloridebridgedthorium4933−4936.(b)Khalimon,A.Y.;Farha,P.;Kuzmina,L.G.;Nikonov,phosphinidiidecomplexanditsreactivitytowardssmallorganicG.I.Catalytichydroborationbyanimido4hydridocomplexofmolecules.NewJ.Chem.2019,43,9527−9539.(c)Zhang,C.;Hou,Mo(iv).Chem.Commun.2012,48,455−457.(c)Temprado,M.;G.;Zi,G.;Ding,W.;Walter,M.D.AnAlkali-MetalHalide-BridgedMcDonough,J.E.;Mendiratta,A.;Tsai,Y.-C.;Fortman,G.C.;ActinidePhosphinidiideComplex.Inorg.Chem.2019,58,1571−Cummins,C.C.;Rybak-Akimova,E.V.;Hoff,C.D.Thermodynamic1590.andKineticStudiesofHAtomTransferfromHMo(CO)(η5-CH)(10)Afewreactionsinvolvingclustersanddinuclearcomplexeshave355toMo(N[t-Bu]Ar)3and(PhCN)Mo(N[t-Bu]Ar)3:DirectInsertionbeendescribed:(a)Cotton,F.A.;Daniels,L.M.;Murillo,C.A.;ofBenzonitrileintotheMo-HBondofHMo(N[t-Bu]Ar)3formingWang,X.Fromend-oncoordinationofacetonitrilemoleculestocross-(Ph(H)CN)Mo(N[t-Bu]Ar)3.Inorg.Chem.2008,47,9380−9389.wisebridging;formationofiminophosphinoandacetamidateligandsin(d)Figueroa,J.S.;Cummins,C.C.TheNiobaziridine-Hydrideadimolybdenumcomplexbyfurtherreactionswithnucleophiles.FunctionalGroup:SynthesisandDivergentReactivity.J.Am.Chem.Polyhedron1998,17,2781−2793.(b)Cotton,F.A.;Kühn,F.E.Soc.2003,125,4020−4021.(e)Debad,J.D.;Legzdins,P.;Lumb,S.DimolybdenumCompoundswithCrosswise-BridgingAcetonitrile366https://dx.doi.org/10.1021/acs.organomet.0c00704Organometallics2021,40,358−369

9Organometallicspubs.acs.org/OrganometallicsArticleMolecules.J.Am.Chem.Soc.1996,118,5826−5827.(c)Ang,H.-G.;(triphenylphosphine)-rhenium(III).ActaCrystallogr.,Sect.C:Cryst.Koh,C.-H.;Koh,L.-L.;Kwik,W.-L.;Leong,W.-K.;Leong,W.-Y.Struct.Commun.1997,53,428−430.Reactionsofperfluoroalkyl-substitutedphosphineswithosmium(18)GuedesdaSilva,M.F.C.;FraustodaSilva,J.J.R.;Pombeiro,́carbonylclusters:crystalstructuresofbridged,linkedandsubstitutedA.J.L.ActivationofOrganonitrilestowardβ-ElectrophilicAttack.derivatives.J.Chem.Soc.,DaltonTrans.1993,847−855.SynthesisandCharacterizationofMethyleneamide(Azavinylidene)(11)Cowley,A.R.;Dilworth,J.R.;Nairn,A.K.;Robbie,A.J.ComplexesofRhenium.Inorg.Chem.2002,41,219−228.Preparationandcharacterizationofdiarylphosphazeneanddiary-(19)Ferreira,C.M.P.;GuedesdaSilva,M.F.C.;Kukushkin,V.lphosphinohydrazidecomplexesoftitanium,tungstenandrutheniumYu.;FraustodaSilva,J.J.R.;Pombeiro,A.J.L.Thefirstdirect́andphosphorylketimidocomplexesofrhenium.DaltonTrans.2005,observationofN-Obondcleavageintheoxidativeadditionofan680−693.oximetoametalcentre.Synthesisandcrystalstructureofthe(12)(a)Rahman,M.M.;Smith,M.D.;Amaya,J.A.;Makris,T.M.;methyleneamidecomplextrans-[Re(OH)(NCMe2)-Peryshkov,D.V.ActivationofC-HBondsofAlkyl-andArylnitriles(Ph2PCH2CH2PPh2)2][HSO4].J.Chem.Soc.,DaltonTrans.1998,bytheTaCl5-PPh3LewisPair.Inorg.Chem.2017,56,11798−11803.325−326.(b)Rahman,M.M.;Smith,M.D.;Peryshkov,D.V.ImidoGroup(20)Klopsch,I.;Kinauer,M.;Finger,M.;Würtele,C.;Schneider,S.InterchangeinReactionsofZwitterionicTantalum(V)VinylimidoConversionofDinitrogenintoAcetonitrileunderAmbientCon-ComplexesandNitriles.Organometallics2018,37,2945−2949.ditions.Angew.Chem.,Int.Ed.2016,55,4786−4789.(13)Forexample,see(a)Kalofolias,D.A.;Weselski,M.;Siczek,M.;(21)Du,G.;Fanwick,P.E.;Abu-Omar,M.M.MechanisticInsightLis,T.;Tsipis,A.C.;Tangoulis,V.;Milios,C.J.DinuclearandintoHydrosilylationReactionsCatalyzedbyHighValentRe⋮X(X=MononuclearRheniumCoordinationCompoundsuponEmploymentO,NAr,orN)Complexes:TheSilane(SiH)DoesNotAddacrossofaSchiff-BaseTriolLigand:Structural,Magnetic,andComputa-theMetal-LigandMultipleBond.J.Am.Chem.Soc.2007,129,5180−tionalStudies.Inorg.Chem.2019,58,8596−8606.(b)Salvarese,N.;5187.Refosco,F.;Seraglia,R.;Roverso,M.;Dolmella,A.;Bolzati,C.(22)Gryca,I.;Machura,B.;Shul’pina,L.S.;Shul’pin,G.B.Synthesisandcharacterizationofrhenium(III)complexeswithSynthesis,structuresandcatalyticactivityofp-tolylimidorhenium(V)complexesincorporatingquinoline-derivedligands.Inorg.Chim.Acta(Ph2PCH2CH2)2NRdiphosphinoamineligands.DaltonTrans.2017,2017,455,683−695.46,9180−9191.(c)Belov,A.S.;Novikov,V.V.;Zelinskii,G.E.;(23)Lohrey,T.D.;Bergman,R.G.;Arnold,J.OxygenAtomVologzhanina,A.V.;Varzatskii,O.A.;Myasoedov,B.F.;Voloshin,Y.TransferandIntramolecularNitreneTransferinaRheniumβ-Z.Newrhenium(III)semiclathrochelateswithbiorelevantapicalDiketiminateComplex.Inorg.Chem.2016,55,11993−12000.substituents:Synthesis,X-raystructureandreactivity.Inorg.Chem.(24)Porchia,M.;Tisato,F.;Refosco,F.;Bolzati,C.;Cavazza-Commun.2016,72,23−29.(d)Mukiza,J.;Gerber,T.I.A.;Hosten,Ceccato,M.;Bandoli,G.;Dolmella,A.NewApproachtotheE.2-Mercapto-oroticacidasabridgingchelateinaRe(III)Re(IV)ChemistryofTechnetium(V)andRhenium(V)Phenylimidodimerwithametal-metalbond.Inorg.Chem.Commun.2016,67,64−Complexes:Novel[M(NPh)PNP]3+MetalFragments(M=Tc,66.(e)Palion-Gazda,J.;Gryca,I.;Machura,B.;Lloret,F.;Julve.Re;PNP=Aminodiphosphine)SuitablefortheSynthesisofStableSynthesis,crystalstructureandmagneticpropertiesofthecomplexMixed-LigandCompounds.Inorg.Chem.2005,44,4766−4776.[ReCl3(tppz)]·MeCN.M.RSCAdv.2015,5,101616−101622.(25)Sabounchei,S.J.;Samiee,S.;Morales-Morales,D.;Hernandez-(f)Salvarese,N.;Dolmella,A.;Refosco,F.;Bolzati,C.Reactivityof+99mOrtega,S.CrystalStructureof4-Bromobenzoylmethylenediphenyl-the[M(PS)2]BuildingBlock(M=ReIIIandTcIII;PS=diphenylphosphinomethylphosphorane.X-RayStruct.Anal.OnlinePhosphinothiolate)towardIsopropylxanthateandPyridine-2-thiolate.2011,27,3−4.Inorg.Chem.2015,54,1634−1644.(g)Klopsch,I.;Finger,M.;(26)Forareview,seeFerreira,M.J.;Martins,A.M.Group4Wuertele,C.;Milde,B.;Werz,D.B.;Schneider,S.Dinitrogenketimidecomplexes:Synthesis,reactivityandcatalyticapplications.SplittingandFunctionalizationintheCoordinationSphereofCoord.Chem.Rev.2006,250,118−132.Rhenium.J.Am.Chem.Soc.2014,136,6881−6883.(h)Schleker,(27)Forrecentexamples,see(a)Cook,A.W.;Hrobarik,P.;P.P.M.;Honeker,R.;Klankermayer,J.;Leitner,W.CatalyticDamon,P.L.;Najera,D.;Horvath,B.;Wu,G.;Hayton,T.W.DehydrogenativeAmideandEsterFormationwithRhenium-TriphosSynthesisandCharacterizationofaLinear,Two-CoordinatePt(II)Complexes.ChemCatChem2013,5,1762−1764.(i)Salvarese,N.;KetimideComplex.Inorg.Chem.2019,58,15927−15935.(b)Assefa,Morellato,N.;Venzo,A.;Refosco,F.;Dolmella,A.;Bolzati,C.M.K.;Sergentu,D.;Seaman,L.A.;Wu,G.;Autschbach,J.;Hayton,SynthesisandCharacterizationof[MIII(PS)2(L)]Mixed-LigandT.W.Synthesis,Characterization,andElectrochemistryoftheCompounds(M=Re,99Tc;PS=Phosphinothiolate;L=HomolepticfElementKetimideComplexes[Li]2[M(N=CtBuPh)6]Dithiocarbamate)asPotentialModelsfortheDevelopmentofNew(M=Ce,Th).Inorg.Chem.2019,58,12654−12661.(c)Kurogi,T.;AgentsforSPECTImagingandRadiotherapy.Inorg.Chem.2013,52,Mane,M.V.;Zheng,S.;Carroll,P.J.;Baik,M.;Mindiola,D.J.6365−6377.(j)Mejía,E.;Togni,A.RheniumComplexesContainingDivergentpathwaysinvolving1,3-dipolaradditionandN-NbondtheChiralTridentateFerrocenylLigandPigiphos.Organometallicssplittingofanorganicazideacrossazirconiummethylidene.Angew.2011,30,4765−4770.Chem.,Int.Ed.2018,57,1978−1981.(d)Shimbayashi,T.;Okamoto,(14)(a)Rouschias,G.;Wilkinson,G.ThepreparationandreactionsK.;Ohe,K.GenerationofStableRuthenium(IV)Ketimidooftrihalogeno(alkanonitrile)bis(triphenylphosphine)rhenium(III)ComplexesbyOxidativeAdditionofOximeEsterstoRuthenium(II):complexes.J.Chem.Soc.A1967,993−1000.(b)Pearson,C.;ReactivityStudiesBasedonElectronicPropertiesoftheRu-NBond.Beauchamp,A.1HNMRstudyofmonomericchloro-rhenium(III)Chem.-Eur.J.2017,23,16892−16897.(e)Shimbayashi,T.;complexeswithtriarylphosphinesandnitriles.Inorg.Chim.Acta1995,Okamoto,K.;Ohe,K.GenerationofStableRuthenium(IV)Ketimido237,13−18.ComplexesbyOxidativeAdditionofOximeEsterstoRuthenium(II):(15)Machura,B.;Dziegielewski,J.O.;Kusz,J.Thesynthesis,̧ReactivityStudiesBasedonElectronicPropertiesoftheRu-NBond.spectroscopicinvestigation,crystalandmolecularstructureofChem.-Eur.J.2017,23,16892−16897.(f)Eijsink,L.E.;Perdriau,S.[ReCl3(MeCN)(dppe)]complex.Inorg.Chem.Commun.2003,6,C.P.;deVries,J.G.;Otten,E.Metal-ligandcooperativeactivationof786−789.nitrilesbyarutheniumcomplexwithade-aromatizedPNNpincer(16)Bultitude,J.;Larkworthy,L.F.;Povey,D.C.;Smith,G.W.;ligand.DaltonTrans.2016,45,16033−16039.(g)Vecera,M.;Varga,Dilworth,J.R.ThePreparationandCrystalandMolecularStructuresV.;Cisarova,I.;Pinkas,J.;Kucharczyk,P.;Sedlarik,V.;Lamac,M.ofTrichlorobis(methyldiphenylphosphine)vanadium(III)anditsGroup4MetalComplexesofChelatingCyclopentadienyl-ketimideAcetonitrile.Adduct.J.Chem.Soc.,DaltonTrans.1986,2253−2258.Ligands.Organometallics2016,35,785−798.(h)Eijsink,L.E.;(17)Davis,M.;Belanger-Gariépy,F.;Zargarian,D.;Beauchamp,A.́Perdriau,S.C.P.;deVries,J.G.;Otten,E.Metal-ligandcooperativeL.Reinvestigationofmer,trans-(Acetonitrile)trichlorobis-activationofnitrilesbyarutheniumcomplexwithade-aromatized367https://dx.doi.org/10.1021/acs.organomet.0c00704Organometallics2021,40,358−369

10Organometallicspubs.acs.org/OrganometallicsArticlePNNpincerligand.DaltonTrans.2016,45,16033−16039.(i)Beattie,Garcia,M.E.;Garcia-Vivo,D.;Huergo,E.;Ruiz,M.A.AcetonitrileR.J.;White,P.S.;Templeton,J.L.RegioselectivityofAdditiontotheAdduct[MoReCp(μ-H)(μ-PCy2)(CO)5(NCMe)]:ASurrogateofanAzavinylideneLigandinTp’W(CO)(η2-HC≡CH)(N:CHMe):Elec-UnsaturatedHeterometallicHydrideComplex.Inorg.Chem.2018,57,trophilicAdditionversusOxidationandRadicalCoupling.Organo-912−915.(c)Yamazaki,Y.;Rohacova,J.;Ohtsu,H.;Kawano,M.;metallics2016,35,32−38.(j)Chen,J.;Huang,Z.;Lu,Z.;Zhang,H.;Ishitani,O.SynthesisofRe(I)RingsComprisingDifferentRe(I)Xia,H.SynthesisofCyclicVinylideneComplexesandAzavinylideneUnitsandTheirLight-HarvestingAbilities.Inorg.Chem.2018,57,ComplexesbyFormal[4+2]CyclizationReactions.Chem.-Eur.J.15158−15171.(d)Chakraborty,I.;Carrington,S.J.;Roseman,G.;2016,22,5363−5375.(k)Carbo,J.J.;Garcia-Lopez,D.;Gonzalez-Mascharak,P.K.Synthesis,Structures,andCOReleaseCapacityofaDelMoral,O.;Martin,A.;Mena,M.;Santamaria,C.Carbon-FamilyofWater-SolublePhotoCORMs:AssessmentoftheNitrogenBondConstructionandCarbon-OxygenDoubleBondBiocompatibilityandTheirPhototoxicitytowardHumanBreastCleavageonaMolecularTitaniumOxonitride:ACombinedCancerCells.Inorg.Chem.2017,56,1534−1545.(e)Chakraborty,I.;ExperimentalandComputationalStudy.Inorg.Chem.2015,54,Jimenez,J.;Sameera,W.M.C.;Kato,M.;Mascharak,P.K.9401−9412.LuminescentRe(I)CarbonylComplexesasTrackablePhotoCORMs(28)(a)Pombeiro,A.J.L.;Hughes,D.L.;Richards,R.L.AnovelforCOdeliverytoCellularTargets.Inorg.Chem.2017,56,2863−routetomethyleneamidoligandsbyprotonationofnitrilesligatingan2873.(f)Pena,D.;Otero,Y.;Arce,A.;Garcia,J.M.;Coll,D.S.;electron-richcentre.Synthesisoftrans-[ReCl(NCR)(dppe)2](R=Ocando-Mavarez,E.;Machado,R.;Gonzalez,T.Synthesis,character-alkyloraryl,dppe=Ph2PCH2CH2PPh2)and[ReCl(N=izationandreactivityofdinuclearrheniumcomplexescontainingCHC6H4OMe-4)(dppe)2][BF4].J.Chem.Soc.,Chem.Commun.hemilabilephosphinesasligands:X-raystructuresofdiax-1988,1052−1053.(b)FraustodaSilva,J.J.R.;C.Guedesdá[Re(CO){κ1(P)-PhP(CH)CN}],[Re(CO){μ:κ3(P,C,C)-28222228Silva,M.F.;Henderson,R.A.;Pombeiro,A.J.L.;Richards,R.L.iPrNP(CHCH:CH)}]anddiax-[Re(CO)(PPh){κ1(P)-p-2222283Protonationofthenitriteligandversusprotonationofrheniumatcis-MeOC6H4P(CH2CH:CH2)2}].Inorg.Chim.Acta2016,439,178−ortrans-[ReCl(NCC6H4R-4)(Ph2PCH2CH2PPh2)2](R=Cl,F,Me185.(g)Rohacova,J.;Sekine,A.;Kawano,T.;Tamari,S.;Ishitani,O.orMeO).Amechanisticstudy.J.Organomet.Chem.1993,461,141−TrinuclearandTetranuclearRe(I)RingsConnectedwithPhenylene,145.Vinylene,andEthynyleneChains:Synthesis,Photophysics,andRedox(29)(a)Chatt,J.;Dosser,R.J.;King,F.;Leigh,G.J.Properties.Inorg.Chem.2015,54,8769−8777.(h)Kondrasenko,I.;Methyleneamido-complexesofrhenium.J.Chem.Soc.,DaltonTrans.Kisel,K.S.;Karttunen,A.J.;Jaenis,J.;Grachova,E.V.;Tunik,S.P.;1976,2435−2440.(b)Chatt,J.;Dosser,R.J.;Leigh,G.J.Koshevoy,I.O.Rhenium(I)ComplexeswithAlkynylphosphaneMethyleneamido-complexesofrhenium(III).J.Chem.Soc.,Chem.Ligands:Structural,Photophysical,andTheoreticalStudies.Eur.J.Commun.1972,1243−1244.Inorg.Chem.2015,2015,864−875.(30)Vogt,M.;Nerush,A.;Iron,M.A.;Leitus,G.;Diskin-Posner,Y.;(33)Glendening,E.D.;Badenhoop,J.K.;Reed,A.E.;Carpenter,J.Shimon,L.J.W.;Ben-David,Y.;Milstein,D.ActivationofNitrilesbyE.;Bohmann,J.A.;Morales,C.M.;Landis,C.R.;Weinhold,F.NBOMetalLigandCooperation.ReversibleFormationofKetimido-and6.0;TheoreticalChemistryInstitute,UniversityofWisconsin:Enamido-RheniumPNPPincerComplexesandRelevancetoMadison,WI,2013.http://nbo6.chem.wisc.edu/.CatalyticDesign.J.Am.Chem.Soc.2013,135,17004−17018.(34)Chatt,J.;Leigh,G.J.;Mingos,D.M.P.;Paske,R.J.Complexes(31)Forrecentexamplesofnucleophilicadditionreactionsofofosmium,ruthenium,rhenium,andiridiumhalideswithsomeorganonitrilesactivatedbyrheniumcomplexes,see(a)Chin,C.P.;tertiarymonophosphinesandmonoarsines.J.Chem.Soc.A1968,Ren,Y.;Berry,J.;Knott,S.A.;McLauchlan,C.C.;Szczepura,L.F.2+2636−2641.Smallmoleculeactivationofnitrilescoordinatedtothe[Re6Se8](35)Pearson,C.;Beauchamp,A.1HNMRstudyofmonomericcore:formationofoxazine,oxazolineandcarboxamidecomplexes.chloro-rhenium(III)complexeswithtriarylphosphinesandnitriles.DaltonTrans.2018,47,4653−4660.(b)Osinski,A.J.;Morris,D.L.;Inorg.Chim.Acta1995,237,13−18.Herrick,R.S.;Ziegler,C.J.Re(CO)3-TemplatedSynthesisofα-(36)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Amidinoazadi(benzopyrro)methenes.Inorg.Chem.2017,56,14734−Robb,M.A.;Cheeseman,J.R.;Scalmani,G.;Barone,V.;Mennucci,14737.(c)Corbin,W.C.;Nichol,G.S.;Zheng,Z.AmidineB.;Petersson,G.A.;Nakatsuji,H.;Caricato,M.;Li,X.;Hratchian,H.ProductionbytheAdditionofNH3toNitrile(s)Boundtoand32+P.;Izmaylov,A.F.;Bloino,J.;Zheng,G.;Sonnenberg,J.L.;Hada,M.;ActivatedbytheLewisAcidic[Re6(μ-Se)8]ClusterCore.Inorg.Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Chem.2016,55,9505−9508.(d)Gomez-Iglesias,P.;Martín-Alvarez,́J.M.;Miguel,D.;Villafañe,F.AmidinoligandsobtainedfromtheNakajima,T.;Honda,Y.;Kitao,O.;Nakai,H.;Vreven,T.;couplingof1-methylcytosineandnitrile:anewmethodtoincorporateMontgomery,J.A.,Jr.;Peralta,J.E.;Ogliaro,F.;Bearpark,M.;biomoleculesintoluminescentRe(CO)3complexes.DaltonTrans.Heyd,J.J.;Brothers,E.;Kudin,K.N.;Staroverov,V.N.;Kobayashi,2015,44,17478−17481.(e)Gomez-Iglesias,P.;Guyon,F.;Khatyr,R.;Normand,J.;Raghavachari,K.;Rendell,A.;Burant,J.C.;Iyengar,A.;Ulrich,G.;Knorr,M.;Martin-Alvarez,J.M.;Miguel,D.;Villafane,S.S.;Tomasi,J.;Cossi,M.;Rega,N.;Millam,J.M.;Klene,M.;Knox,F.Luminescentrhenium(I)tricarbonylcomplexeswithpyrazolyla-J.E.;Cross,J.B.;Bakken,V.;Adamo,C.;Jaramillo,J.;Gomperts,R.;midinoligands:photophysical,electrochemical,andcomputationalStratmann,R.E.;Yazyev,O.;Austin,A.J.;Cammi,R.;Pomelli,C.;studies.DaltonTrans.2015,44,17516−17528.(f)Yempally,V.;Fan,Ochterski,J.W.;Martin,R.L.;Morokuma,K.;Zakrzewski,V.G.;W.Y.;Arndtsen,B.A.;Bengali,A.A.IntramolecularC-CBondVoth,G.A.;Salvador,P.;Dannenberg,J.J.;Dapprich,S.;Daniels,A.CouplingofNitrilestoaDiimineLigandinGroup7MetalD.;Farkas,O.;Foresman,J.B.;Ortiz,J.V.;Cioslowski,J.;Fox,D.J.TricarbonylComplexes.Inorg.Chem.2015,54,11441−11449.Gaussian09,revisionD.01;Gaussian,Inc.:Wallingford,CT,2009.(g)Gómez-Iglesias,P.;Arroyo,M.;Bajo,S.;Strohmann,C.;(37)Zhao,Y.;Truhlar,D.G.J.T.C.A.TheM06suiteofdensityMiguel,D.;Villafañe,F.PyrazolylamidinoLigandsfromCouplingfunctionalsformaingroupthermochemistry,thermochemicalofAcetonitrileandPyrazoles:ASystematicStudy.Inorg.Chem.2014,kinetics,noncovalentinteractions,excitedstates,andtransition53,12437−12448.(h)Viguri,M.E.;Huertos,M.A.;Perez,J.;Riera,elements:twonewfunctionalsandsystematictestingoffourM06-L.Imidazole-nitrileorimidazole-isonitrileC-Ccouplingonrheniumclassfunctionalsand12otherfunctionals.Theor.Chem.Acc.2008,tricarbonylcomplexes.Chem.-Eur.J.2013,19,12974−12977.120,215−241.(32)Forrecentexamplesofsubstitutionreactionsofrhenium−(38)(a)Hay,P.J.;Wadt,W.R.Abinitioeffectivecorepotentialsfornitrilecomplexeswithphosphines,see(a)Alvarez,M.A.;Garcia,M.molecularcalculations.PotentialsforthetransitionmetalatomsSctoE.;Garcia-Vivo,D.;Huergo,E.;Ruiz,M.A.CoordinationandHg.J.Chem.Phys.1985,82,270−283.(b)Hay,P.J.;Wadt,W.R.AbDehydrogenationofDiphosphine-BoranePh2PCH2PPh2·BH3atainitioeffectivecorepotentialsformolecularcalculations.PotentialsHeterometallicMoReCentertoGiveanAgosticBoryl-BridgedforKtoAuincludingtheoutermostcoreorbitals.J.Chem.Phys.1985,Derivative.Inorg.Chem.2019,58,16134−16143.(b)Alvarez,M.A.;82,299−310.368https://dx.doi.org/10.1021/acs.organomet.0c00704Organometallics2021,40,358−369

11Organometallicspubs.acs.org/OrganometallicsArticle(39)(a)Petersson,G.A.;Bennett,A.;Tensfeldt,T.G.;Al-Laham,M.A.;Shirley,W.A.;Mantzaris,J.Acompletebasissetmodelchemistry.I.Thetotalenergiesofclosed-shellatomsandhydridesofthefirst-rowelements.J.Chem.Phys.1988,89,2193−2218.(b)Petersson,G.A.;Al-Laham,M.A.Acompletebasissetmodelchemistry.II.Open-shellsystemsandthetotalenergiesofthefirst-rowatoms.J.Chem.Phys.1991,94,6081−6090.(40)Ehlers,A.;Böhme,M.;Dapprich,S.;Gobbi,A.;Höllwarth,A.;Jonas,V.;Köhler,K.;Stegmann,R.;Veldkamp,A.;Frenking,G.Asetoff-polarizationfunctionsforpseudo-potentialbasissetsofthetransitionmetalsSc-Cu,Y-AgandLa-Au.Chem.Phys.Lett.1993,208,111−114.(41)Fukui,K.Thepathofchemicalreactions-theIRCapproach.Acc.Chem.Res.1981,14,363−368.(42)Marenich,A.V.;Cramer,C.J.;Truhlar,D.G.Universalsolvationmodelbasedonsoluteelectrondensityandonacontinuummodelofthesolventdefinedbythebulkdielectricconstantandatomicsurfacetensions.J.Phys.Chem.B2009,113,6378−6396.369https://dx.doi.org/10.1021/acs.organomet.0c00704Organometallics2021,40,358−369

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭