资源描述:
《Breaking as from High-Lying Triplet Excited State - Feng et al. - Unknown - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
SupportingInformationBreakingKasha’sRuleasaMechanismforSolution-PhaseRoom-TemperaturePhosphorescencefromHigh-LyingTripletExcitedStateChangfuFeng,†,§ShuaiLi,†,§LiyuanFu,‡XiaoxiaoXiao,‡ZhenzhenXu,‡QingLiao,‡YishiWu,*,‡JiannianYao,*,†,#andHongbingFu,*,†,‡†InstituteofMoleculePlus,SchoolofChemicalEngineeringandTechnology,TianjinUniversity,Tianjin300072,P.R.China‡BeijingKeyLaboratoryforOpticalMaterialsandPhotonicDevices,DepartmentofChemistry,CapitalNormalUniversity,Beijing100048,P.R.China#KeyLaboratoryofPhotochemistry,InstituteofChemistry,ChineseAcademyofSciences,Beijing,P.R.China§Theseauthorscontributedequally.CorrespondingAuthor:*E-mail:hongbing.fu@tju.edu.cn*E-mail:jnyao@iccas.ac.cn*E-mail:yswu@cnu.edu.cnS1
1ExperimentalSections1.SynthesisandCharacterizationSchemeS1.Syntheticroutesfor(4-(9H-carbazol-9-yl)phenyl)(dibenzo[b,d]thiophen-3-yl)methanone(CzCbDBT)1.1Synthesisofdibenzo[b,d]thiophen-2-yl(4-chlorophenyl)methanone(ClBDBT)TheClBDBTwassynthesizedwithuseofamodifiedliteraturepreparation.1AnhydrousAlCl3(1.46g,11.0mmol)in1,2-dichloroethane(10mL)wasslowlyaddedto4-chlorobenzoylchloride(1.68g,12.0mmol).Thesolutionwasstirredandkeptat0℃.Asolutionofdibenzothiophene(1.84g,10.0mmol)in1,2-dichloroethane(10mL)wasthenslowlyinjected.Thereactionmixturewasstirredatroomtemperaturefor10handthenrefluxedfor3h.Thereactionwasquenchedwith1NHClinicebath.Themixturewasextractedwithchloroform(3×100mL).Thecombinedorganicextractswerewashedwithsaturatedbrine,driedoveranhydrousMgSO4,filteredandconcentratedinvacuum.Theresiduewaspurifiedonasilicagelcolumnusingpetroleumether/dichloromethanemixture(5:1,v/v)aseluenttoaffordtheproductaswhitepowder.Yield:80%.1HNMR(600MHz,DMSO)δ8.72(d,J=1.1Hz,1H),8.49(d,J=7.8Hz,1H),8.24(d,J=8.3Hz,1H),8.11(d,J=7.8Hz,1H),7.86(m,3H),7.67(d,J=8.5Hz,2H),7.57(m,2H).S2
21.2Synthesisof(4-(9H-carbazol-9-yl)phenyl)(dibenzo[b,d]thiophen-3-yl)methanone(CzCbDBT)Thereactionofcarbazole(0.25g,1.5mmol),ClBDBT(0.6g,1.65mmol),palladiumacetate(16.8mg,0.075mmol),triphenylphosphoniumtetrafluoroborate(44mg,0.15mmol),sodiumt-butoxide(288mg,3mmol),and20mloftolueneweresequentiallyaddedina100mlroundbottomflask.Underanitrogenatmosphere,themixturewasheatedto110°Candheatedtorefluxfor24hours.Afterthereactionwascompleted,itwascooledtoroomtemperature,andthenthereactionwaspouredinto100mloficewaterandstirredfor1hour.Theorganiclayerwasextractedthreetimeswithdichloromethane,andthenseverallayerswerecombined,washedthreetimeswithsaturatedbrine,driedoveranhydroussodiumsulfate,andconcentratedunderreducedpressure.Theresiduewaspurifiedonasilicagelcolumnusingpetroleumether/ethylacetatemixture=7:1(v/v)aseluenttoaffordtheproductaswhitepowder.Yield:50%.1HNMR(600MHz,DMSO)δ8.84(s,1H),8.54(d,J=8.0Hz,1H),8.27(dd,J=8.0,3.2Hz,3H),8.11(t,J=9.0,9.0Hz,3H),7.97(dd,J=8.4,1.5Hz,1H),7.88(d,J=8.3Hz,2H),7.57(m,4H),7.48(t,J=7.7,7.7Hz,2H),7.33(t,J=7.4,7.4Hz,2H).MS(MALDI-TOF,m/z):calcdforC31H19NOS,453.6.Found,453.7.Characterization1HNMR(600MHz)spectrawererecordedindeuteratedsolventsonaBrukerADVANCE600NMRSpectrometer.Tetramethylsilane(TMS)wasusedastheinternalstandard.MSwererecordedonaGCTpremierCAB048massspectrometeroperatinginMALDI-TOFmode.SpectralCharacterizationandPhotophysicalParameters2.Steady-StateSpectroscpicMeasurements.TheUV-visibleabsorptionspectraweremeasuredonaShimadzuUV-3600spectrometerwithaslitwidthof1nm.Thefluorescenceemissionspectroscopy,S3
3temperaturedependentphotoluminescencespectraweremeasuredonaHoribaFluoroMax-4-NIRspectrophotometers.Thefluorescencequantumyieldwasmeasuredabsolutelyatanexcitationwavelengthof365nm.3.Thelifetime,time-resolvedemissionspectraMeasurement.Webuiltthepicosecondtimeresolutiondeviceindependentlyfortesting,thedeviceconfigurationisasfollows:thesecondharmonic(400nm,150fs,1kHz)ofaregenerativeamplifier(Spitfire,SpectraPhysics)seededwithamode-lockedTi:sapphirelaser(Tsunami,SpectraPhysics)wasusedtoexcitethesamples(liquidsampleina10mmcuvette)atthefrontsurfacewithanincidenceangleof45°.Inordertoavoidinterferenceasmuchaspossible,theexcitationpulselightandthesignallightarespatiallyperpendiculartoeachother.Thesignalcollectedalongthedirectionnormaltothesamplesurfacewasdispersedbyapolychromator(250is,Chromex)anddetectedwithastreakcamera(C5680,HamamatsuPhotonics).Thespectralresolutionwas0.2nm,andthetemporalresolutionwasslightlydifferentabout100psonthemeasureddelay-time-rangesetting.Dissolvedoxygenwasremovedbybubblinginthesolutionwithhighpuritynitrogenfor30minutes.Sincetheresolutiontimeofthestripecameraislimited,thespectrumandlifetimeofthe77kwererecordedinfront-facemodewithanEdinburghinstruments(FLS980)equippedwithaPeltier-cooledHamamatsuR928-PPMT(200-900nm)andcorrectedforthewavelengthdependentphototuberesponse.Gatedemissionspectrawereacquiredinfront-facemodewiththesameinstrumentsbyusingatime-gatedspectralscanningmodeanda450WXenonlamp(pulsewidth<2μs,repetitionratebetween0.1and100Hz)astheexcitationsource.Spectrawerecorrectedforthewavelengthdependentphototuberesponse.4.FemtosecondTransientAbsorptionSpectroscopy.ThelaserpulsesofthefemtosecondtransientabsorptionwasgeneratedbyATi:sapphirefemtosecondlasersystem.Theamode-lockedTi:sapphirelaser(Tsunami,SpectraPhysics)deliveredlaserpulsesat800nm(120fs,1kHz)asaseedtoaregenerativeamplifier(Spitfire,SpectraPhysics).Aftertheseedlightpassesthrougha9:1beamsplitter,themainlightisexcitedbyanopticalparametricamplificationS4
4(OPA)system,andtheremaininglightisfocusedona3mmsapphiresheettoproducewhitelight.Theprobewavelengthwasselectedbyaband-passfilter.Usingacomputer-controlledmotorizedtranslationstage,thetimedelaybetweentheprobeandpumpbeamswereregulated.Thetemporalresolutionwasdeterminedabout150fsandthetransmittedlightwasdetectedbyalinearimagesensor(S8377-512Q,Hamamatsu).The1mmrotatingsamplecellwasexcitedby0.1μJ/pulse.Atypicalabsorbanceattheexcitationwavelengthwas0.4−0.6.5.Nanosecondflashphotolysisspectrum.Theoutputlightwithananosecondpulsewavelengthof355nmisobtainedbydirectlyexcitingtheNd:YAG(ContinuumSureliteII,7nsfwhm)laser.Apulsedxenonarclampwasusedtoprovidetheanalyzinglight.Inordertoavoidinterferenceasmuchaspossible,theexcitationpulselightandtheprobelightarespatiallyperpendiculartoeachother.Theliquidsamples(1.0cmquartzcell)weresettledontheplatformattheintersectionofthemonitoringlightandtheexcitationpulse.Allthesamplesareopticallydiluteatthelaserexcitationwavelength.ThesignalsweredetectedbytheEdinburghLP920andrecordedontheTektronixTDS3012Boscilloscopeandcomputer.Thetripletlifetimeswereobtainedbykineticanalysisofthetransientabsorption.ThedissolvedoxygenwasremovedthroughbubblingwithhighpurityN2for~30min.Allthespectraweremeasuredatroomtemperatureifnofurthernotification.7.TheoreticalcalculationmethodsGeometricalandelectronicstructuresofallstateswerecalculatesbyGaussian09programpackage.2Theequilibriumgeometriesofground(Sn)andtripletstates(Tn)inDCMsolutionweredeterminedatB3LYP/6-31G*levelusingdensityfunctionaltheory(DFT)andtime-dependentDFT(TDDFT)combinedwithpolarizablecontinuummodel(PCM).Basedonthismethod,thenaturetransitionorbitals(NTOs)werealsocalculatedforS1andTnstatesbasedontheiroptimizedconformations,respectively.Commonpureorganicsmallmoleculesandmoleculeswithchargetransferfeaturescanbesufficientlydescribedbytheabovemethod.Atthesamelevel,thespin-orbitcoupling(SOC)matrixelementsbetweensingletandtripletstatesareS5
5givenbyPySOCprogram,3thetransitionoscillatorstrength(f)andthetransitionmomentaregivenbyDaltonprogram.AdditionaldataandresultsFigureS1.(a)NormalizedphotoluminescencespectraofCzBDBTindifferentsolvents.(b)PLdecaycurvesofCzCbDBTindifferentsolventsunderair.Withtheenhancementofthesolventpolarity,theemissionspectraofCzCbDBTexhibitanobvioussolvatochromicred-shift,indicatingtheICTnatureofCzCbDBT.Simultaneously,withtheincreasingpolarityofthesolvent,thelifetimeofCzCbDBTincreasedfrom0.15,0.25to0.89μs.TheseresultsindicatethattheRTPfromT2stateisindeedaCTemission.FigureS2.(a)ThePLspectraofCzCbDBTinCH2Cl2solutionunderN2andair.(b)ThesteadyandDelayspectraCzCbDBTinCH2Cl2solutionunderN2.ItcanbeseenthatthesteadyandDelayspectraCzCbDBTarenearlysame.S6
6FigureS3.(a,b)PLdecaycurvesofCzCbDBTinCH2Cl2solutionsat485nmunderairandunderN2,respectively.FigureS4.ThePLspectrumofCzCbDBTinCH2Cl2at77K(blackline)andthespectrumobtainedbysummingupthethreespectrainFigure2cwithacertainweightingratioarewonderfully,indicatingthattheemissionofCzCbDBTsolutionat77Kisindeedcomposedofemissionsofthesethreedifferentstates.S7
7FigureS5.ThedecaycurvesofCzCbDBTinCH2Cl2solutionunder77Katdifferentwavelengths.Thedecaycurvesindicatethatthelifetimesat465,485,505and525nmarenearlysame.FigureS6.(a)Thens-TAspectraofCzCbDBTinCH2Cl2solutionunderambientconditionexcitedwitha355nm,0.6cm-diameterlaserpulse.(b)Thecorrespondingtime-absorptionprofilesat570(triangle),690nm(circle)withthesolidlinespresenttheglobalfitting.S8
8FigureS7.ThemolecularconformationofS1withadihedralanglebetweencarbazole(Cz)unitandphenylincarbonylunit(Cb)ofabout91.5°.Thisverticalconformationallowselectronsandholestobedistributedindifferentpartsofthemolecule,resultinginacompletelychargetransfernatureintheS1state.TableS1.TheICbetweenT2toT1andnon-radiationratesofT2andT1ofCzCbDBT.kIC,T2↔T1(s-1)bkPh-nr,T1(s-1)ckPh-nr,T2(s-1)cCzCbDBT1.01.53×10314.7bkIC,T2↔T1=ΦT1/τT2.ckPh-nr,T1andkPh-nr,T2werecalculatedbyusingMOMAPprogram.AsshowninFigure2b,thePLintensityofCzCbDBTsolutionat77Kisabout3timeslargerthanthat(Φ=25.2%)atroomtemperature,indicatingtotalquantumyieldofofCzCbDBTsolutionat77Kisabout75%.AndwecanseeT1statephosphorescenceaccountsforonlyaverysmallpart,about5%.Accordingtotheapproximateformula,kIC=ΦT1/τT2=0.75×0.05/0.03787s=1.0s-1,theICrateofT2↔T1canbecanbeapproximatelyestimatedas1.0s-1.S9
9FigureS8.CalculatedinvolvedfrontiermolecularorbitalsinS1,T1andT2forCzCbDBT.S10
10NMRspectraFigureS9.1HNMR(600MHz,DMSO300K)ofcompoundClBDBTFigureS10.1HNMR(600MHz,DMSO300K)ofcompoundCzCbDBTS11
11MALDIFigureS11MALDIspectraofCzCbDBTS12
12References(1)He,Z.;Zhao,W.;Lam,J.W.Y.;Peng,Q.;Ma,H.;Liang,G.;Shuai,Z.;Tang,B.Z.WhiteLightEmissionfromaSingleOrganicMoleculewithDualPhosphorescenceatRoomTemperature.Nat.Commun.2017,8,416.(2)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Scalmani,G.;Barone,V.;Mennucci,B.;Petersson,G.A.;Nakatsuji,H.;Caricato,M.;Li,X.;Hratchian,H.P.;Izmaylov,A.F.;Bloino,J.;Zheng,G.;Sonnenberg,J.L.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao,O.;Nakai,H.;Vreven,T.;Montgomery,J.A.,Jr.;Peralta,J.E.;Ogliaro,F.;Bearpark,M.J.;Heyd,J.;Brothers,E.N.;Kudin,K.N.;Staroverov,V.N.;Kobayashi,R.;Normand,J.;Raghavachari,K.;Rendell,A.P.;Burant,J.C.;Iyengar,S.S.;Tomasi,J.;Cossi,M.;Rega,N.;Millam,N.J.;Klene,M.;Knox,J.E.;Cross,J.B.;Bakken,V.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin,A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Martin,R.L.;Morokuma,K.;Zakrzewski,V.G.;Voth,G.A.;Salvador,P.;Dannenberg,J.J.;Dapprich,S.;Daniels,A.D.;Farkas;Foresman,J.B.;Ortiz,J.V.;Cioslowski,J.;Fox,D.J.Gaussian09,revisonC.01;Gaussian,Inc.:Wallingford,CT,2009.(3)Gao,X.;Bai,S.;Fazzi,D.;Niehaus,T.;Barbatti,M.;Thiel,W.EvaluationofSpin-OrbitCouplingswithLinear-ResponseTime-DependentDensityFunctionalMethods.J.Chem.TheoryComput.2017,13,515-524.S13