Low-Cost Computing of the Thermophysical Properties of Organic − Inorganic Halide Perovskites by Density Functional Theory Combined with

Low-Cost Computing of the Thermophysical Properties of Organic − Inorganic Halide Perovskites by Density Functional Theory Combined with

ID:81816793

大小:5.02 MB

页数:10页

时间:2023-07-21

上传者:U-14522
Low-Cost Computing of the Thermophysical Properties of Organic − Inorganic Halide Perovskites by Density Functional Theory Combined with_第1页
Low-Cost Computing of the Thermophysical Properties of Organic − Inorganic Halide Perovskites by Density Functional Theory Combined with_第2页
Low-Cost Computing of the Thermophysical Properties of Organic − Inorganic Halide Perovskites by Density Functional Theory Combined with_第3页
Low-Cost Computing of the Thermophysical Properties of Organic − Inorganic Halide Perovskites by Density Functional Theory Combined with_第4页
Low-Cost Computing of the Thermophysical Properties of Organic − Inorganic Halide Perovskites by Density Functional Theory Combined with_第5页
Low-Cost Computing of the Thermophysical Properties of Organic − Inorganic Halide Perovskites by Density Functional Theory Combined with_第6页
Low-Cost Computing of the Thermophysical Properties of Organic − Inorganic Halide Perovskites by Density Functional Theory Combined with_第7页
Low-Cost Computing of the Thermophysical Properties of Organic − Inorganic Halide Perovskites by Density Functional Theory Combined with_第8页
Low-Cost Computing of the Thermophysical Properties of Organic − Inorganic Halide Perovskites by Density Functional Theory Combined with_第9页
Low-Cost Computing of the Thermophysical Properties of Organic − Inorganic Halide Perovskites by Density Functional Theory Combined with_第10页
资源描述:

《Low-Cost Computing of the Thermophysical Properties of Organic − Inorganic Halide Perovskites by Density Functional Theory Combined with》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCCArticleLow-CostComputingoftheThermophysicalPropertiesofOrganic−InorganicHalidePerovskitesbyDensityFunctionalTheoryCombinedwiththeThree-DimensionalReferenceInteractionSiteMethodTomoyasuYokoyama,*SatoruOhuchi,TaisukeMatsui,YukihiroKaneko,andTakaoSasagawaCiteThis:J.Phys.Chem.C2021,125,6601−6610ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Organic−inorganichybridmaterials(OIHMs)representedbymethylammoniumleadtriiodide(MAPbI3)andformamidiniumleadtriiodide(FAPbI3),whicharetheabsorptionlayerofperovskitesolarcells,haveattractedmuchattention.However,itisdifficulttocalculatethepropertiesofOIHMsbydensityfunctionaltheory(DFT)intermsofcomputationalcostbecausetheorganicmoleculesrotatewithintheinorganicframeworkatfinitetemperature.Here,usingcubicMAPbI3asanexample,wedemonstratethereductionofthecomputationalcostforOIHMsbyDFTcombinedwiththethree-dimensionalreferenceinteractionsitemethod(3D-RISM).TheRISMwasdevelopedtosimulatethestructuresandreactionsattheinterfaceofsolidsandliquids.BytreatingtheMAcationasapseudoliquid,wesuccessfullyreproducedthedistributionoftheMAcationexperimentallyobservedatafinitetemperature.WhentheRISMtemperaturewaschanged,thethermalexpansioncoefficientandtemperaturedependenceofthebandgapofMAPbI3werepredicted,andtheywereingoodagreementwithexperimentalreports.Inaddition,thelatticeconstant,thebandgap,andfreeenergyofmixingofMA1−xFAxPbI3canbeevaluatedbyDFT/3D-RISMwithoutusingaDownloadedviaUNIVOFNEWMEXICOonMay16,2021at07:59:01(UTC).supercell.Therefore,thismethodmakestheevaluationofthermophysicalpropertieswithouthigh-costcomputingpossible.Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.■PbI3inorganiccageatfinitetemperature.Athightemperatures,INTRODUCTIONTheprocessingoforganic−inorganichybridmaterialsMAPbI3isstableinthecubicaristotypePm3̅mstructurewith1−6(OIHMs)hasattractedagreatdealofinterest.Thesynergythehighestsymmetry(Figure2a)becausetheMAcation15−17oftheorganicandinorganiccomponentshasbeencanfreelyrotate.Asthetemperaturedecreases,theMAdemonstratedinanumberofnaturallyformedhybridcationscannotfreelyrotateandbegintoformhydrogenbondsmaterials.Aninterestingexampleisorganic−inorganichalidewiththehalogenatoms.Thisorderingoftheorganiccationsperovskites.Thetypicalcompositionsofthesematerialsarecausesaphasetransition.18ThephasetransformationsfromCH3NH3PbI3(MAPbI3)andHC(MH2)2PbI3(FAPbI3).cubictotetragonalandtetragonaltoorthorhombicoccuratThesematerialshaveathree-dimensionalperovskitestructure330and161K,respectively.1−6,19,201−7representedbyABX3,whereAisanorganiccation,suchasCHNH+orHC(NH)+(Figure1),BisPb2+,andXisI−.3322Usingthesematerialsastheabsorptionlayerofsolarcells,theReceived:February8,2021powerconversionefficiencyofsuchsolarcellshasincreasedRevised:February19,2021from3.8%to25.2%inthepastdecade.8−14Published:March16,2021Interestingly,therotationalorganiccationdynamicsaffectsthecrystalstructureandelectronicandopticalpropertiesofOIHMs.ForMAPbI3,theorganiccationsrotatewithinthe©2021AmericanChemicalSocietyhttps://doi.org/10.1021/acs.jpcc.1c011716601J.Phys.Chem.C2021,125,6601−6610

1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleorganicmoleculesaremixed,supercellsmustbemodeledconsideringnotonlythefreedomofrotationbutalsothe34,35freedomofthearrangementofthesites.Anothersemiempiricalmethodisthereferenceinteractionsitemethod(RISM),whichdescribesasolventpartasa39continuummodel.Thethree-dimensionalRISM(3D-RISM),whichimposes3DperiodicboundaryconditionsontheRISM,cancalculatethesolvationstructuresinconfined40,41nanospacesinframeworksystems.Recently,Nishiharaand42Otanireformulatedthe3D-RISMbyimposingaplanewaveandpseudopotential(PW−PP)methodbasedonKohn−ShamFigure1.Structuresofthe(a)CHNH+(MA)and(b)HC(NH)+3322densityfunctionaltheory(DFT).ThisDFT/3D-RISM(FA)cations.approachwasdevelopedtosimulatethestructuresandreactionsattheinterfaceofthesolidsandliquids.Whencalculatingthesolid−liquidinterfacebyDFT/3D-RISM,waterTherearemanytheoreticalreportsonorganic−inorganicmoleculesintheliquidcanbetreatedas3D-RISM,andsolidhalideperovskitesusingfirst-principlescalculations,which21−36inorganiccrystalscanbesimulatedattheDFTlevel.Asaprovidenewinsights.However,itisdifficulttocalculateresult,itwaspossibletocalculatethecrystalmaterialsatlowerthepropertiesofOIHMsonthebasisofthefirstprinciplescostthanwhenhandlingallwatermoleculesattheDFTlevel.consideringtherotationoftheorganicmolecules.BecausetheIthasbeenappliedtotheanalysisoftheelectrode/electrolytefirst-principlescalculationstreatamodelatatemperatureof043,44interfaceoflithiumionbatteries,electricdoublelayerK,itisnecessarytofixthepositionoftheorganicmolecules4445capacitors,andphotocatalysts.Thismethodallowsasolutewithintheinorganicframework.Ithasbeentheoretically42reportedthatchangingtheorientationoftheMAcationinmoleculeinabulkporousmaterial,suchaszeolite,tobeMAPbIchangestheelectronicandopticalproperties.21−24treatedbytheRISM.3Therefore,inordertomodelanorganicmoleculethattakesaInthiswork,weutilizedDFT/3D-RISMtosolvetherandomorientationatafinitetemperature,itisnecessarytoproblemofthecomputationalcostofOIHMs.Likewateraveragethecalculationresultsofthemodeloftheorganicmoleculesinliquids,wetreatedorganicmoleculesinOIHMsmoleculerotatedinvariousdirections.Ingeneral,alargebythe3D-RISM.Thiscreatesthefollowingfouradvantages.supercellunderperiodicboundaryconditionsneedstobe(i)Itcancalculateorganicmoleculesconsideringthedegreeofconstructed.25−30,34,35Althoughfirst-principlesmolecularfreedomofitsrotationatlowcost.Becauseorganicmoleculesdynamics(MD)simulationscantakeintoaccountthethermalcanbeexpressedasaprobabilitydistribution,itissufficienttomotionoforganicmoleculesatfinitetemperatures,25−30theycalculateonlyoneunitcellinsteadofseveralsupercellswithrequireconsiderablecomputationalcost.Therefore,thevariousdifferentmolecularorientations.(ii)TheelectronicevaluationofthepropertiesofOIHMsatfinitetemperaturestatecanbecalculatedwhilemaintainingthesymmetryisdifficultintermsofcomputationalcostforbothstaticandobservedatthefinitetemperature.Itisbecausethedynamicfirst-principlescalculations.distributionoforganicmoleculesbecomesisotropicbytreatingSemiempiricalcomputationisanimportanttechniquetoorganicmoleculesasacontinuummodel.(iii)Thetemper-37,38aturedependenceofthepropertiescanbecalculatedrealizelow-costcomputing.Recently,Uratanietal.reportedthatthedensity-functionaltight-binding(DFTB)consideringthethermalmotionoftheorganicmolecules.approach,whichisoneofthesemiempiricalmethods,realizedRISMcanexpresstheaveragethermalmotionofthemoleculesalow-costMDsimulation.Theyanalyzedtheformationbychangingthedistributionofthecontinuummodel.processofpolaronsinMAPbI3withalargesystemsizebytheTherefore,thethermalexpansioncoefficientandcrystalDFTB-MDcalculation.However,whenseveraltypesofstructurestabilityoftheOIHMsathightemperaturescanbeFigure2.(a)CubicMAPbI3modelusedintheDFTapproach.Alloftheatomsinthestructurearetreatedexplicitly.(b)ModelofcubicMAPbI3usedinDFT/3D-RISM.TheMAcationsaretreatedimplicitlyasacontinuumdistribution,andthePbandIatomsaretreatedexplicitly.6602https://doi.org/10.1021/acs.jpcc.1c01171J.Phys.Chem.C2021,125,6601−6610

2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlepredicted.(iv)Theaverageelectronicstatesofcompoundwherethefirsttermontheright-handsideistheLJforcefieldmixingwithdifferenttypesoforganicmoleculescanbeandthesecondtermistheelectrostaticpotential.TheLJcalculatedwithoutusingasupercell.ThiscanbedonebyparametersεAandσAaredefinedforeachsoluteatomA,andsettingthecontinuummodelratioatanarbitrarynonintegerthesummationisperformedforallsoluteatoms.Inthevalue.Thereby,thepropertiesofthemolecularmixedsystemelectrostaticpotential,vDFT(r)isthesumoftheHartreeoftheOIHMscanbecalculatedwithoutperformingMDpotentialandlocalpotentialcalculatedbyDFT.calculations,whichsignificantlyreducesthecomputationalNishiharaandOtani42developedavariantoftheDFT/3D-costs.RISMusingPW−PPasasolutesystem.Inthismethod,theHere,usingcubicMAPbI3asanexample,wedemonstratecorrelationfunctionsofthe3D-RISMaredefinedinaunitcellthereductionofthecomputationalcoststopredicttheofthePW−PPcalculation.Inaddition,theperiodicboundarythermophysicalpropertiesfororganic−inorganichalideperov-conditionisimposedonboththe3D-RISMandPW−PP.skitesbyDFT/3D-RISM.MAcationsweretreatedasaContrarytoanisolatedmoleculeasasoluteintheRISM,thiscontinuumdistribution(liquid)of3D-RISM,whereasPbandImethodallowsasolutemoleculeinabulkporousmaterial,atomsweretreatedasasolidframework.Wesuccessfullysuchaszeolite,tobetreatedbytheRISM.42ThenewlyreproducedthedistributionoftheMAcationexperimentallydevelopedhybridsolvationmodelsareimplementedintheobservedbyNeutrondiffractionatafinitetemperature.Whenfirst-principlessoftwareQuantumESPRESSO.48theRISMtemperaturewaschanged,thethermalexpansionUsingDFT/3D-RISM,wecalculatedcubicMAPbI,whose3coefficientandtemperaturedependenceofthebandgapofunitcellisshowninFigure2a.ThePb−IinorganicframeworkMAPbI3werepredicted,andtheresultswereingoodwascalculatedbyPW−PPwiththePerdew−Burke−Ernzerhofagreementwiththeexperimentalreports.Inaddition,we49exchange−correlationfunctionalrevisedforsolids(PBEsol).calculatedtheaverageelectronicstateofacompoundUltrasoftpseudopotentialswereusedfortheleadandiodinecontainingseveraltypesoforganicmoleculesbyDFT/3D-atoms.ThetotalchargeofthePb−Iframeworkwassetto−1RISM.Thelatticeconstant,thebandgap,andfreeenergyofpercell.SamplingintheBrillouinzonewasperformedusingthemixedmolecularsystem,MA1−xFAxPbI3,wereevaluatedthe8×8×8k-pointmeshoftheGammacenter.withoutusingasupercell.Therefore,thismethodmakesitTheMAcationinsideoftheframeworkwastreatedasapossibletoevaluatethermophysicalpropertieswithouthigh-continuumdistributionofthe3D-RISMusingtheclosureofcostcomputing.46themodelofKovalenkoandHirata.The3D-RISM■implementedinQuantumESPRESSOcodecancontrolnotMETHODonlythedensityofthesolutionmoleculesbutalsothenumber40,46KovalenkoandHiratadevelopedtheoriginalconceptofofthemperconfinedspace.Weusedthelatterfunctionasonethe3D-RISMwithapartiallylinearizedclosureequationtoorganiccationmoleculeperunitcellofPbI3.Theelectronsimulatethedistributionsofa“solvent”,suchaswaterandchargedensityandatomicshapeoftheMAcationwereions,arounda“solute”,suchasabiomolecule.Theinteraction50optimizedbytheGaussian09codeusingtheB3LYPdensitybetweenthesoluteandsolventisdescribedasaclassicalforce51functionaland6-311++G**basisset.ThetotalchargeofthefieldmodeledbytheLennard-Jones(LJ)potentialandpoint47MAcationwassetto+1permolecule.Usingthecalculatedchargestocalculateuαγ(r)bychargedensityandoptimizedmolecularstructure,theMAÄÅÅ126ÉÑÑcationwastreatedbythesimplepointchargemodelinthe3D-ÅÅÅÅloo()σσαγ++|ooloo()σσαγ|ooÑÑÑÑqqÅÅoo2oooo2ooÑÑαγRISM.TheLJparametersfortheorganicmoleculeswereuαγ()r=−4εεαγÅÅmoo}oomoo}ooÑÑ+calculatedbytheACPYPEcode52usingthegeneralAMBERÅÅÅÅoorrooooooÑÑÑÑr47ÅÅÇn~n~ÑÑÖforcefield(GAFF).TheLJparametersarediscussedintheSupportingInformation.Theoptimizedstructure,chargewherethefirsttermontheright-handsideistheLJpotentialdensity,andRISMcorrelationfunctionoftheFAcationandthesecondtermistheelectrostaticpotential.Thewereobtainedinthesameway.TheLJparametersofthesubscriptsαandγrefertoatomicsites;risthedistanceframeworkwerethoseoftheuniversalforcefield.53Thecutoffbetweenthesites.εαandσαaretheparametersoftheLJenergieswere100,211,and276Ryfortheelectronicwavepotential,andqαistheamountofcharge.Theseparametersarefunction,chargedensity,andsolventcorrelationfunction,constantanddefinedforeachatomicsite.respectively.TheaboveparametersweredeterminedbyToimprovemodelingofthesolutemolecule,anabinitiocalculatingtheconvergenceoftheparametersshowninFigureelectronicstructurecalculationwithaGaussianbasissetwas41S2.Theroot-mean-squarethresholdsoftheone-dimensionalappliedtoasolutemoleculebySatoandco-workers.This−8−6RISMand3D-RISMweresetto1×10and5×10,methodiscalledtheDFT/3D-RISMor3D-RISMself-respectively.consistentfield(3D-RISM-SCF).Inthismethod,theTheharmonicphonondispersionforMAPbI3wascalculatedCoulombicinteractionfromthepointchargesisreplacedby54usingthePHONOPYpackage.Thephonondispersion(fortheelectrostaticpotentialfromtheabinitiocalculation.TheqpointsawayfromtheBrillouinzonecenter,theΓpoint)inpotentialfunctionusedinthe3D-RISMcalculationuα(r)isthethecubicphasewasprobedina2×2×2supercell.Beforeinteractionbetweenthesolventatomicsiteαandsolute:thiscalculation,weperformedcompleteoptimizationoftheÄÅÅ126ÉÑÑlatticeconstant,shape,andatomicpositions.ThisprocedureÅÅÅÅloo()σσαα++AA|ooloo()σσ|ooÑÑÑÑu()r=∑4εεÅÅoom2oo}−oom2oo}ÑÑwasdonemanuallyasfollows,sincetheschemeforthe3D-ααAÅÅÅÅoo|−|rRoooo|−|rRooÑÑÑÑRISMandPW−PPcalculationshasnotbeenimplementedinAÅÅoonAoo~oonAoo~ÑÑÅÇÑÖQuantumESPRESSO.Whilemaintainingthecubiccell,thelatticeconstantwaschangedfrom6.3to6.5Åinstepsof0.01−qvDFT()rαÅ,andatomicrelaxationwasperformedtoobtainthemost6603https://doi.org/10.1021/acs.jpcc.1c01171J.Phys.Chem.C2021,125,6601−6610

3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure3.(a)Chargedensitydistributiononthe(001)planeobtainedbyDFT.(b)RISMchargedensitydistributionoftheMAcationonthe(001)planeobtainedbyDFT/3D-RISM.ElectronicdensityofstatesofcubicMAPbI3obtainedby(c)DFTand(d)DFT/3D-RISM.BandstructureofcubicMAPbI3obtainedby(e)DFTand(f)DFT/3D-RISM.Theoriginoftheenergyissettothevalencebandmaximum.Thedifferencebetweentheconductionbandminimumandvalencebandmaximumcorrespondstothebandgap(Eg).HarmonicphonondispersionofcubicMAPbI3obtainedby(g)DFTand(h)DFT/3D-RISM.TheRISMtemperaturewassetto330K.stablestructure.EachcalculatedstructurewasdrawnwithOntheotherhand,becausetheMAcationistreatedasa55VESTA.continuummodelinDFT/3D-RISM,thechargedensitydistributionisisotropicalongthex,y,andzaxes,which■RESULTSANDDISCUSSIONmeansthecubicsymmetryremainsthesame(Figure3b).TheUsingDFT/3D-RISM,itispossibletocalculatetheactualpositivelychargedregionsoftheMAcationarelocatedinthedistributionoftheMAcationatafinitetemperature.The[011]directiontothenegativelychargedIion.ThechargedensitydistributionsofMAPbI3onthe(100)planedistributionsoftheCandNatomsoftheMAcationobtainedobtainedbyconventionalDFTandDFT/3D-RISMareshownbyDFT/3D-RISMareshowninFigureS3.ThedistributionofinFigure3a,b.IntheDFTapproach,theMAcationsareNatomsisclosertotheIionsthanthatoftheCatoms.Thismodeledexplicitlyandorientedinthe[001]direction.Asaresult,mostofthechargesarelocalizednearNandCatoms,meansthatthe−NH3groupoftheMAcation,whichisforminganelectricdipolealongthe[001]direction(Figurepositivelycharged,isattractedtothenegativelychargedIion3a).Thesymmetryisloweredfromcube(Pm3̅m)totriclinicbytheCoulombinteraction.Anexperimentalneutron(P1)intheDFTmodelbyexplicitlytreatingtheMAcations.diffractionstructuralstudyreportedthattheMAcation6604https://doi.org/10.1021/acs.jpcc.1c01171J.Phys.Chem.C2021,125,6601−6610

4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure4.(a)RISMchargedensitydistributionsoftheMAcationsonthe(001)planeincubicMAPbI3obtainedbyDFT/3D-RISMatRISMtemperaturesof200,300,400,and500K.(b)TotalenergydependenceofthelatticeconstantofcubicMAPbI3whentheRISMtemperature(T)waschanged.Theoriginoftheenergyissettotheminimumvalueoftheenergywhenthelatticeconstantischanged.TheresultofT=0KwasobtainedbyDFT,andtheresultsforT>0KwereobtainedbyDFT/3D-RISM.Temperaturedependenceofthelatticeconstantsof(c)MAPbI359,61and(d)FAPbI3.RedcircleandblackcrossmarksindicatetheresultsobtainedbyDFT/3D-RISMandtheexperiment,respectively.15primarilyresidesalongthe[011]direction,whichagreeswithmolecule,CsPbI3maintainsthecubicPm3̅msymmetryevenourresults.afterthefulllatticerelaxationintheconventionalDFT.TheTheelectronicdensityofstates(DOS)andbandstructureresultsforCsPbI3areclosetothoseforMAPbI3obtainedbyofcubicMAPbI3obtainedbyDFTandDFT/3D-RISMareDFT/3D-RISM.ItshouldbenotedthatthechargesinCsPbI3showninFigure3c−f.Forcomparison,theywerecalculatedinareisotropicandlocalizedinthebodycenter,whereasthoseinaunitcellwiththesamecubiclatticeconstant(6.31Å),whichMAPbI3aredistributedinacentrosymmetricbutmoreistheexperimentallatticeconstantofMAPbI3at330K.Thecomplexstructure.Inanycase,DFT/3D-RISMenablesustoRISMtemperaturewassetto330K.AlthoughtheMAcationscalculatetheelectronicstatesofthehigh-temperaturephaseofaretreatedimplicitlyinDFT/3D-RISM,theelectronicstatesMAPbI3,whichhasbeenexperimentallyconfirmedtohavethenearthevalencebandmaximum(VBM)andconductionbandcubicsymmetryduetotherotationoftheMAmolecule.minimum(CBM)obtainedbyDFT/3D-RISMaresimilartoThephononbandstructuresofcubicMAPbI3calculatedbythoseobtainedbyDFT.Thebandgapof1.29eVobtainedbyDFTandDFT/3D-RISMareshowninFigure3g,h.TheRISMDFT/3D-RISMisclosetothatof1.26eVobtainedbyDFT.temperaturewassetto330K.ForDFT,theimaginaryThisisbecausethevalenceandconductionbandsofMAPbI3(negativeenergy)modeofthephononsisobservedattheRareformedbytheorbitalsofthePb−Iframework.Thepoint.ThisindicatesthepresenceofasaddlepointintheelectronicstateofPbI−afterremovaloftheMAcationfrompotentialenergysurfaceoftheatomicpositionsand,thus,that3theAsiteisshowninFigureS4.ThebandgapofPbI−is1.20thecubicstructureisnotthermodynamicallystable,whichisin331−33,36eV,whichissmallerthanthatofMAPbI3calculatedbyDFT/goodagreementwithprevioustheoreticalreports.This3D-RISMandDFT.Thisisbecauseofthespatialspreadingofisbecause,intheDFTapproach,theMAcationsareorientedtheelectronsintheinorganicframeworkwithouttheinfluenceinacertaindirection,resultinginthepolarizationofthecrystalofCoulombrepulsionfromtheAsiteinPbI−.Therefore,instructure.36However,ithasbeenexperimentallyreportedthat31−6,19,20DFT/3D-RISM,theRISMchargesreflecttotheelectronstatesthenonpolarcubicstructureisstableabove330K.ofaninorganicframework.ThisclearlyindicatesthattheMAcationrotationshouldbeIntheenergyrangebetween−0.5and−2.5eV,theDOStakenintoaccountfortheaccurateevaluationofthecrystalandbandstructureobtainedbyDFT/3D-RISMaredifferentstructureofMAPbI3atfinitetemperature.TheimaginaryfromthoseobtainedbyDFT.ThemostdistinctdifferenceismodedoesnotappearintheresultscalculatedbyDFT/3D-anexistenceofapeakintheDOSatabout−2.3eVbyDFT/RISMwiththeRISMtemperatureof330K,indicatingthatthe3D-RISM.TheelectronicstatesobtainedbyDFT/3D-RISMcubicstructureisstableatthistargettemperature.WhenthearedegenerateatpointsΓandR,whiletheyarenotbyDFT.MAcationistreatedasacontinuummodel,thedistributionofThisisduetotheloweredtriclinicsymmetryintheDFTMAcationsbecomesisotropicalongthex,y,andzaxes,model.TheDOSandbandstructureofcubicCsPbI3obtainedresultinginthePbI3inorganicframeworkbeingabletobyDFTareshowninFigureS5.BecausetheAsiteofCsPbI3maintaincubicsymmetry.ThesameDFT/3D-RISMcalcu-isanisotropicCsatominsteadofananisotropicorganiclationforPbI−(perovskitestructurewithouttheMAcationat36605https://doi.org/10.1021/acs.jpcc.1c01171J.Phys.Chem.C2021,125,6601−6610

5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure5.(a)RISMchargedensitydistributionsonthe(001)planeincubicMA(1−x)FAxPbI3obtainedbyDFT/3D-RISMatFAcationratios(x)of0.0,0.25,0.5,0.75,and1.0.(b)DependenceofthelatticeconstantontheFAcationratioincubicMA1−xFAxPbI3.Circleandcrossmarks65indicatetheresultsobtainedbyDFT/3D-RISMandtheexperiments,respectively.(c)DependenceoftheGibbsenergychangeontheFAcationratioincubicMA1−xFAxPbI3.TheredlinesaretheresultsataRISMtemperature(T)of300K.Thedashedlineistheresultwithouttheentropychangeofmixing.(d)TemperaturedependenceofthebandgapsofMAPbI3andMA0.13FA0.87PbI3obtainedbyDFT/3D-RISMand59,66experiments.theAsite)isshowninFigureS6.Animaginarymodeofthetemperature.ThelatticeparameteroptimizedbyDFT/3D-phononsisalsoobserved,aswithMAPbI3obtainedbytheRISMislargerthanthatoptimizedbyDFTandincreasesasconventionalDFTcalculation.ThisresultsuggeststhatthetheRISMtemperatureincreases.ThisresultreflectsthepresenceofapositivelychargedMAcationstabilizestheincreaseinthethermalrotationoftheMAcationandthestructureofthecubiccell.Therefore,whenthethermalexpansionoftheRISMdistributionoftheMAcationwithbehavioroftheorganicmoleculesisaveragedwiththeRISM,itincreasingtemperature.ispossibletoevaluatethethermodynamicalstabilityoftheThetemperaturedependenceofthelatticeconstantofcubicOIHMsatfinitetemperature,whichisimpossiblewiththeMAPbI3andFAPbI3obtainedbyDFT/3D-RISMandthe59conventionalDFTapproach.experimentisshowninFigure4c,d.ThelatticeconstantsInpreviousstudies,thethermalpropertiesevaluatedbyobtainedbyDFT/3D-RISMincreasewithincreasingtemper-conventionalDFTunderthequasi-harmonicapproximationature,whichagreeswiththeexperimentaltrend.Thelinear56−58(QHA)havebeenreported.However,thepropertiesthermalexpansioncoefficientsofMAPbI3forT>300KobtainedbythisapproachonlyincludetheeffectoftheobtainedbyDFT/3D-RISMandtheexperimentsare2.7×inorganicframeworkandnottheeffectofthermalrotationof10−5/Kand4.8×10−5/K,59,60respectively.Similarly,thoseoftheorganicmolecules.Moreover,whenimaginaryphononsFAPbIbyDFT/3D-RISMandtheexperimentare3.5×10−5/3appearasinthepreviousresults,itisdifficulttoaccuratelyKand3.6×10−5/K,61respectively.Itisseenthat,thecloserpredictthethermalpropertiesunderQHA.Incontrast,thethecalculatedvaluesforthelatticeconstantaretotheDFT/3D-RISMcansimulatetheeffectofthermalrotationofexperimentalvalues,thebetterthelinearthermalexpansiontheorganicmoleculesonthethermalpropertiesatdifferentcoefficientisinagreementbetweenthem.Thisshouldbethetemperatures.TheRISMchargedistributionsincubicMAPbI3casewherethethermalexpansionofthesystemisdominantlycalculatedbyDFT/3D-RISMwiththeRISMtemperaturedeterminedbythethermalmotionoftheorganicmoleculesfrom200to500KareshowninFigure4a.TheseresultsratherthantheanharmonicpotentialoftheinorganicindicatethattheRISMchargedistributionbroadenswithframework.increasingtemperature,reflectinganincreaseinthethermalFormaterialssuchasMAPbI3andFAPbI3,inwhichthemotionoftheMAcation.ThedependenceofthetotalenergyorganicmoleculesarenotstronglyhybridizedneartheVBMorofcubicMAPbI3onthelatticeconstantatdifferentRISMCBM,DFT/3D-RISMcanaccuratelypredictthethermophys-temperaturesisshowninFigure4b.TheresultobtainedbyicalpropertiesatlowcostwithoutusingtheMDapproach.OnDFT,whichcorrespondstothestateatT=0K,isalsoshown.theotherhand,DFT/3D-RISMcannotbeappliedtotheIneachcase,thedependenceofthetotalenergyonthelatticeOIHMswheretheinteractionsbetweentheorganicmoleculesconstantshowsadownwardconvexcurve,ofwhichthelowestandtheinorganicframeworkareverystrong(i.e.,wherethepointcorrespondstothemoststablelatticeconstantatagivenorganicmoleculesdonotrotate).Additionally,itisnot6606https://doi.org/10.1021/acs.jpcc.1c01171J.Phys.Chem.C2021,125,6601−6610

6TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlestraightforwardtoevaluatealow-symmetrystructurebyDFT/whereΔHmixistheenthalpychangeofmixingobtainedby3D-RISMbecausetheautomaticschemeofthelatticeDFT/3D-RISM.Whenaregularsolidsolutionisassumed,relaxationisnotyetimplementedinQuantumESPRESSO.ΔSmixistheentropychangeofmixingbetweentwosolutionsTherefore,thefuturechallengewillbetocalculatethelower-obtainedbythefollowingequation:temperaturephasesoflow-symmetryMAPbI3andFAPbI3byDFT/3D-RISMwiththeappropriatelatticerelaxationsteps.ΔSkmix=−{Bxlnxxx−(1−)ln(1−})Here,onthebasisofourongoingwork,wewouldliketopointoutthatourDFT/3D-RISMapproachcanreproducethewherexistheratiooftheFAcationandkBisBoltzmann’sexperimentalresultsoftheOIHMswithmoderateinteractions.constant.InFigure5c,theenthalpytermat300KisalmostAsshowninFigureS7,thedistortionofthePbI3octahedroninzero,andthefreeenergyofmixingbecomesnegativeowingtothetetragonalMAPbI3from300to100K,duetothereducedthecontributionoftheentropyofmixing.Therefore,itis(enhanced)molecularrotation(interactions)withdecreasingsuggestedthattheMAandFAcationsareisomorphousatatemperature,hasbeensuccessfullysimulatedbyDFT/3D-finitetemperature,whichisconsistentwiththeexperimental19,20RISM.Theextendedcalculationssuchasanisotropiclatticeresults.expansion,bandgap,phononproperties,andthermodynamicDFT/3D-RISMcanbeusedtoevaluatethethermophysicalpropertieshavebeeninprogress,whichwillbereportedinpropertiesforanycompositionoforganicmoleculesatlowdetailseparatelyelsewhere.cost.Asanexample,thetemperaturedependenceoftheIntheexperiments,compositionalengineeringtechniquesbandgapofexperimentallyreportedcubicMA0.13FA0.87PbI3at66havebeendevelopedtoimprovethepowerconversionhightemperaturewascalculatedusingDFT/3D-RISMand62,63plottedinFigure5d.Forcomparison,theexperimentalefficiencyandstabilityofsolarcelldevices.However,59whencalculatingamixedmodelwithseveraltypesoforganicreportandcalculatedresultofthetemperaturedependencemoleculesbyconventionalDFT,itisnecessarytomakeofthebandgapofcubicMAPbI3arealsoshown.appropriatesupercellstoconsidertheorientationandsitesofMA0.13FA0.87PbI3hasalargerbandgapthanMAPbI3.Thethemolecules,resultinginhugecomputationalcost.InbandgapsofbothMAPbI3andMA0.13FA0.87PbI3linearlycontrast,usingDFT/3D-RISM,becausetheorganicmoleculesincreasewithincreasingtemperature.Thisisbecausethearetreatedasacontinuummodel,aunitcellmodelcanbeinteractionbetweenthePbandIatomsisweakenedbythecalculatedatanarbitrarymixingratioregardlessofthenumberthermalexpansionofthelattice.Thistrendisconsistentwith59,66oftypesofmixedmolecules.Todemonstratethis,DFT/3D-experimentalresultsoncubicperovskitestructures.RISMcalculationswereperformedoncubicMA1−xFAxPbI3,inAsdemonstrated,DFT/3D-RISMisaveryeffectivewhichtheMAandFAcationsaremixed.TheRISMcalculationmethodformixedsystemsbecausethesimulationtemperaturewassetto300K.Thechargedensitydistributionsmodelsareunitcells,notsupercells,evenifthenumberofonthe(001)planeforFAratios(x)of0.0,0.25,0.5,0.75,andtypesoforganiccationsincreases.Therefore,finally,wewould1.0areshowninFigure5a.ThechargedistributionofFAPbI3liketoshowhowmuchthecomputationalcostscanbeishigherinthecenterregionthanMAPbI3.ThisdifferencereducedbyusingDFT/3D-RISMascomparedwiththeMDoccursbecausetheFAcationhasapositivechargeattheCsimulation,whichistheconventionalDFTapproachtotakeatomlocatedatthecenterofthetwo−NH2groups(seeintoaccountthethermalmotionoforganicmoleculesatfiniteFigure5a)andislesspolarizablethantheMAcation.Becausetemperatures.ThecomputationalcostsforMA0.25FA0.75PbI3the−HCgroupsoftheFAcationarepositivelycharged,theusingMDandDFT/3D-RISMaresummarizedinTable1.On35−NH2groupsappeartoberelativelynegativelycharged.Thethebasisofapreviousstudy,weassumedthatthetotaltimenegativelychargedregionislocatedneartheIioninthechargefortheMDsimulationtoreachequilibriummotionwas40psdistribution.Theseresultsindicatethatthehydrogenatomsofwithatimestepof0.1fs,and4×4×2cubicsupercellswerethe−NH2groupsareboundtotheIions,whichisingoodusedtorealizetherandomarrangementandorientationoftheagreementwiththeresultsoftheneutrondiffractionorganicmolecules.ThePbandIatomswerefixed.DFT/3D-64experiments.ThechargedensitydistributioncontinuouslychangeswiththechangeofthemixingratioofMAandFATable1.ComputationalCostofMA0.25FA0.75PbI3Usingcations,indicatingthattheDFT/3D-RISMcalculationsConventionalDFT(MD)andDFT/3D-RISMsuccessfullytakeintoaccountthemixingeffectsofdifferenttotaltotalorganiccations.atomsCPUThedependenceofthelatticeconstantofcubicinthetotaltimeaMA1−xFAxPbI3onthemixingratioofMAandFAcationscompoundmethodcellsizecellsteps(h)bfromDFT/3D-RISMcalculationsandtheexperimentalMA0.25FA0.75PbI3DFT4×4×2384400000938265(MD)resultsareshowninFigure5b.ThemolecularradiioftheMAandFAcationsare216and253pm,respectively.SinceDFT/1×1×141213D-theFAcationislargerthanMAcation,thelatticeconstantRISMincreasesastheratiooftheFAcationincreases,whichagrees65awellwiththeexperimentalresults.ThedependenceoftheThecalculationswereperformedinthefollowingenvironment:anGibbsfreeenergyofmixingonthemixingratiooftheMAandIntel(R)Xeon(R)CPUE5-2698v3@2.30GHz,132GBmemory,bFAcationsincubicMA1−xFAxPbI3isshowninFigure5c.and16cores.ThetotalCPUtimettotalrequiredfortheMDsimulationwasdeterminedbythefollowingformula:t=tfirst+MAPbI3andFAPbI3aresetastheenergystandards.Thetotaltsecond+tave×(n−2),wheretfirstandtsecondaretheCPUtimesforGibbsfreeenergychangeofmixing(ΔGmix)wascalculatedbystepavethefirstandsecondSCFloops,respectively,tistheaverageCPUthefollowingequation:timefromthethirdlooptothe50thloop,andnstepisthetotalionicstepforMD.tfirst=317.42s,tsecond=122.47s,tave=84.44s,andnstepΔGTmix()=ΔHTTmix()−ΔSmix=400000stepswereused.6607https://doi.org/10.1021/acs.jpcc.1c01171J.Phys.Chem.C2021,125,6601−6610

7TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleRISMcancalculateaself-consistentloopofrandomorganicLaboratoryforMaterialsandStructures,TokyoInstituteofmoleculemotionsatfinitetemperaturewithoutusingaTechnology,Yokohama,Kanagawa226-8503,Japan;supercell.Thus,usingDFT/3D-RISM,thecomputationalorcid.org/0000-0001-8993-7681;costcanbereducedbyupto500timeswithoutcompromisingEmail:yokoyama.tomoyasu@jp.panasonic.comthecalculationaccuracycomparedwiththeMDsimulation.WhenDFT/3D-RISMwasincorporatedintothecasesofAuthorstheOIHMs,itwasfoundthatthecalculationcostwasSatoruOhuchi−TechnologyDivision,PanasonicsignificantlyreducedwhilemaintainingacertainlevelofCorporation,Moriguchi,Osaka570-8501,Japanaccuracy,asifthefirst-principlescalculationswereswitchedTaisukeMatsui−TechnologyDivision,Panasonicfromtheall-electrontothepseudopotentialmethods.Corporation,Moriguchi,Osaka570-8501,JapanFurthermore,thefactthatthecalculationsoftheOIHMYukihiroKaneko−TechnologyDivision,PanasonicsystemswithamixtureofdifferentorganicmoleculescouldbeCorporation,Moriguchi,Osaka570-8501,Japan;computedlikeavirtualcrystalapproximation(VCA)wasalsoorcid.org/0000-0003-0000-5840reminiscentoftheaboverelationship.Therefore,theDFT/3D-TakaoSasagawa−LaboratoryforMaterialsandStructures,RISMapproachproposedinthisstudyisexpectedtobewidelyTokyoInstituteofTechnology,Yokohama,Kanagawa226-usedforthedevelopmentofnewOIHMssuitablefor8503,Japanoptoelectronicandthermoelectricapplications.Completecontactinformationisavailableat:■https://pubs.acs.org/10.1021/acs.jpcc.1c01171CONCLUSIONInthiswork,weappliedtheDFT/3D-RISMapproach,whichNoteshasbeenusedtosimulatethesolid/liquidinterface,totheTheauthorsdeclarenocompetingfinancialinterest.OIHMsanddemonstratedthepredictionofthethermophys-icalpropertiesofcubicMAPbI3atlowcomputationalcost■comparedwithMD.BecausetheorganicmoleculesrotateACKNOWLEDGMENTSwithintheinorganicframeworkatfinitetemperature,itisWethankM.Otanifordiscussions.ThisworkwassupporteddifficulttocalculatetheOIHMsbytheconventionalDFTbyajointindustry−universityprojectbetweenPanasonicandapproachintermsofcomputationalcost.WeappliedDFT/theTokyoInstituteofTechnology[KY300121]andpartially3D-RISMtocubicMAPbI,whichisoneofthemostfamousbyaCRESTproject[JPMJCR16F2]fromtheJapanScience3OIHMs.MAcationsweretreatedasacontinuumdistributionandTechnologyAgency.(liquid)of3D-RISM,whereasPbandIatomsweretreatedasasolidframework.Wesuccessfullyreproducedtheexperimen-■REFERENCEStallyobserveddistributionoftheMAcationatafinite(1)Poglitsch,A.;Weber,D.DynamicDisorderinMethylammo-temperature.WhentheRISMtemperaturewaschanged,theniumtrihalogenoplumbates(II)ObservedbyMillimeter-WaveSpec-thermalexpansioncoefficientandtemperaturedependenceoftroscopy.J.Chem.Phys.1987,87,6373−6378.thebandgapofMAPbI3werepredicted,andtheresultswere(2)Onoda-Yamamuro,N.;Matsuo,T.;Suga,H.DielectricStudyofingoodagreementwiththeexperimentalreports.Inaddition,CH3NH3PbX3(X=Cl,Br,I).J.Phys.Chem.Solids1992,53,935−becausetheRISMtreatsdifferentcontinuummodelson939.(3)Kawamura,Y.;Mashiyama,H.;Hasebe,K.StructuralStudyonaverage,theaverageelectronicstateofacompoundcontainingCubic−TetragonalTransitionofCH3NH3PbI3.J.Phys.Soc.Jpn.2002,severaltypesoforganicmoleculescanbecalculatedbyDFT/71,1694−1697.3D-RISM.Thelatticeconstant,thebandgap,andfreeenergy(4)Stoumpos,C.C.;Malliakas,C.D.;Kanatzidis,M.G.ofmixingofMA1−xFAxPbI3,inwhichMAandFAcationsareSemiconductingTinandLeadIodidePerovskiteswithOrganicmixed,canbeevaluatedwithoutusingasupercell.ThismethodCations:PhaseTransitions,HighMobilities,andnear-InfraredmakestheevaluationofthermophysicalpropertieswithoutPhotoluminescentProperties.Inorg.Chem.2013,52,9019−9038.high-costcomputingpossible.(5)Baikie,T.;Fang,Y.;Kadro,J.M.;Schreyer,M.;Wei,F.;Mhaisalkar,S.G.;Graetzel,M.;White,T.J.SynthesisandCrystal■ChemistryoftheHybridPerovskite(CH3NH3)PbI3forSolid-StateASSOCIATEDCONTENTSensitisedSolarCellApplications.J.Mater.Chem.A2013,1,5628−*sıSupportingInformation5641.TheSupportingInformationisavailablefreeofchargeat(6)Fabini,D.H.;Siaw,T.A.;Stoumpos,C.C.;Laurita,G.;Olds,https://pubs.acs.org/doi/10.1021/acs.jpcc.1c01171.D.;Page,K.;Hu,J.G.;Kanatzidis,M.G.;Han,S.;Seshadri,R.MOLfilesoftheMAandFAcationsusedinthisworkUniversalDynamicsofMolecularReorientationinHybridLead(ZIP)IodidePerovskites.J.Am.Chem.Soc.2017,139,16875−16884.(7)Dang,Y.;Liu,Y.;Sun,Y.;Yuan,D.;Liu,X.;Lu,W.;Liu,G.;Xia,Detailedsimulationmethod;RISMchargedensityH.;Tao,X.BulkCrystalGrowthofHybridPerovskiteMaterialdistribution;electronicdensityofstates;totalenergyCH3NH3PbI3.CrystEngComm2015,17,665−670.dependences;distributionsofCandN;bandstructures(8)Kojima,A.;Teshima,K.;Shirai,Y.;Miyasaka,T.OrganometalofCsPbIandPbI−;Harmonicphonondispersionof33HalidePerovskitesasVisible-LightSensitizersforPhotovoltaicCells.PbI−;dependenceoftheinorganicframeworkinthe3J.Am.Chem.Soc.2009,131,6050−6051.tetragonalMAPbI3ontheRISMtemperature(PDF)(9)Yang,W.S.;Noh,J.H.;Jeon,N.J.;Kim,Y.C.;Ryu,S.;Seo,J.;Seok,S.Il.High-PerformancePhotovoltaicPerovskiteLayers■FabricatedthroughIntramolecularExchange.Science2015,348,AUTHORINFORMATION1234−1237.CorrespondingAuthor(10)Saliba,M.;Matsui,T.;Seo,J.Y.;Domanski,K.;Correa-Baena,TomoyasuYokoyama−TechnologyDivision,PanasonicJ.P.;Nazeeruddin,M.K.;Zakeeruddin,S.M.;Tress,W.;Abate,A.;Corporation,Moriguchi,Osaka570-8501,Japan;Hagfeldt,A.;etal.Cesium-ContainingTripleCationPerovskiteSolar6608https://doi.org/10.1021/acs.jpcc.1c01171J.Phys.Chem.C2021,125,6601−6610

8TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleCells:ImprovedStability,ReproducibilityandHighEfficiency.EnergyHC(NH2)2PbI3byMDSimulationsandGroupTheory.Phys.Chem.Environ.Sci.2016,9,1989−1997.Chem.Phys.2016,18,27109−27118.(11)Saliba,M.;Matsui,T.;Domanski,K.;Seo,J.Y.;Ummadisingu,(28)Quarti,C.;Mosconi,E.;Ball,J.M.;D’Innocenzo,V.;Tao,C.;A.;Zakeeruddin,S.M.;Correa-Baena,J.P.;Tress,W.R.;Abate,A.;Pathak,S.;Snaith,H.J.;Petrozza,A.;DeAngelis,F.StructuralandHagfeldt,A.;etal.IncorporationofRubidiumCationsintoPerovskiteOpticalPropertiesofMethylammoniumLeadIodideacrosstheSolarCellsImprovesPhotovoltaicPerformance.Science2016,354,TetragonaltoCubicPhaseTransition:ImplicationsforPerovskite206−209.SolarCells.EnergyEnviron.Sci.2016,9,155−163.(12)Matsui,T.;Yokoyama,T.;Negami,T.;Sekiguchi,T.;Saliba,(29)Jankowska,J.;Prezhdo,O.V.FerroelectricAlignmentofM.;Grätzel,M.;Segawa,H.EffectofRubidiumforThermalStabilityOrganicCationsInhibitsNonradiativeElectron-HoleRecombinationofTriple-CationPerovskiteSolarCells.Chem.Lett.2018,47,814−inHybridPerovskites:AbInitioNonadiabaticMolecularDynamics.J.816.Phys.Chem.Lett.2017,8,812−818.(13)Matsui,T.;Yamamoto,T.;Nishihara,T.;Morisawa,R.;(30)Maheshwari,S.;Fridriksson,M.B.;Seal,S.;Meyer,J.;Yokoyama,T.;Sekiguchi,T.;Negami,T.CompositionalEngineeringGrozema,F.C.TheRelationbetweenRotationalDynamicsoftheforThermallyStable,HighlyEfficientPerovskiteSolarCellsOrganicCationandPhaseTransitionsinHybridHalidePerovskites.Exceeding20%PowerConversionEfficiencywith85°C/85%1000J.Phys.Chem.C2019,123,14652−14661.hStability.Adv.Mater.2019,31,1806823.(31)Brivio,F.;Frost,J.M.;Skelton,J.M.;Jackson,A.J.;Weber,O.(14)Green,M.A.;Hishikawa,Y.;Dunlop,E.D.;Levi,D.H.;Hohl-J.;Weller,M.T.;Goñi,A.R.;Leguy,A.M.A.;Barnes,P.R.F.;Walsh,Ebinger,J.;Ho-Baillie,A.W.Y.SolarCellEfficiencyTables(VersionA.LatticeDynamicsandVibrationalSpectraoftheOrthorhombic,51).Prog.Photovoltaics2018,26,3−12.Tetragonal,andCubicPhasesofMethylammoniumLeadIodide.(15)Ren,Y.;Oswald,I.W.H.;Wang,X.;McCandless,G.T.;Chan,Phys.Rev.B:Condens.MatterMater.Phys.2015,92,144308.J.Y.OrientationofOrganicCationsinHybridInorganic-Organic(32)Yang,J.;Wen,X.;Xia,H.;Sheng,R.;Ma,Q.;Kim,J.;Tapping,PerovskiteCH3NH3PbI3fromSubatomicResolutionSingleCrystalP.;Harada,T.;Kee,T.W.;Huang,F.;etal.Acoustic-OpticalPhononNeutronDiffractionStructuralStudies.Cryst.GrowthDes.2016,16,2945−2951.up-ConversionandHot-PhononBottleneckinLead-HalidePerov-(16)Li,J.;Bouchard,M.;Reiss,P.;Aldakov,D.;Pouget,S.;skites.Nat.Commun.2017,8,14120.Demadrille,R.;Aumaitre,C.;Frick,B.;Djurado,D.;Rossi,M.;etal.(33)Whalley,L.D.;Skelton,J.M.;Frost,J.M.;Walsh,A.PhononActivationEnergyofOrganicCationRotationinCH3NH3PbI3andAnharmonicity,Lifetimes,andThermalTransportinCH3NH3PbI3CD3NH3PbI3:Quasi-ElasticNeutronScatteringMeasurementsandfromMany-BodyPerturbationTheory.Phys.Rev.B:Condens.MatterFirst-PrinciplesAnalysisIncludingNuclearQuantumEffects.J.Phys.Mater.Phys.2016,94,220301.Chem.Lett.2018,9,3969−3977.(34)Chang,J.;Chen,H.;Yuan,H.;Wang,B.;Chen,X.TheMixing(17)Weller,M.T.;Weber,O.J.;Henry,P.F.;DiPumpo,A.M.;EffectofOrganicCationsontheStructural,ElectronicandOpticalHansen,T.C.CompleteStructureandCationOrientationinthePropertiesofFAxMA1‑xPbI3Perovskites.Phys.Chem.Chem.Phys.PerovskitePhotovoltaicMethylammoniumLeadIodidebetween1002018,20,941−950.and352K.Chem.Commun.2015,51,4180−4183.(35)Fisicaro,G.;LaMagna,A.;Alberti,A.;Smecca,E.;Mannino,(18)Yang,B.;Ming,W.;Du,M.-H.;Keum,J.K.;Puretzky,A.A.;G.;Deretzis,I.LocalOrderandRotationalDynamicsinMixedA-Rouleau,C.M.;Huang,J.;Geohegan,D.B.;Wang,X.;Xiao,K.Real-CationLeadIodidePerovskites.J.Phys.Chem.Lett.2020,11,1068−TimeObservationofOrder-DisorderTransformationofOrganic1074.CationsInducedPhaseTransitionandAnomalousPhotolumines-(36)Beecher,A.N.;Semonin,O.E.;Skelton,J.M.;Frost,J.M.;cenceinHybridPerovskites.Adv.Mater.2018,30,1705801.Terban,M.W.;Zhai,H.;Alatas,A.;Owen,J.S.;Walsh,A.;Billinge,S.(19)Mohanty,A.;Swain,D.;Govinda,S.;Row,T.N.G.;Sarma,D.J.L.DirectObservationofDynamicSymmetryBreakingaboveRoomD.PhaseDiagramandDielectricPropertiesofMA1-XFAxPbI3.ACSTemperatureinMethylammoniumLeadIodidePerovskite.ACSEnergyLett.2019,4,2045−2051.EnergyLett.2016,1,880−887.(20)Francisco-López,A.;Charles,B.;Alonso,M.I.;Garriga,M.;(37)Uratani,H.;Chou,C.P.;Nakai,H.QuantumMechanicalCampoy-Quiles,M.;Weller,M.T.;Goñi,A.R.PhaseDiagramofMolecularDynamicsSimulationsofPolaronFormationinMethyl-Methylammonium/FormamidiniumLeadIodidePerovskiteSolidammoniumLeadIodidePerovskite.Phys.Chem.Chem.Phys.2020,SolutionsfromTemperature-DependentPhotoluminescenceand22,97−106.RamanSpectroscopies.J.Phys.Chem.C2020,124,3448−3458.(38)Uratani,H.;Nakai,H.SimulatingtheCoupledStructural-(21)Brivio,F.;Walker,A.B.;Walsh,A.StructuralandElectronicElectronicDynamicsofPhotoexcitedLeadIodidePerovskites.J.Phys.PropertiesofHybridPerovskitesforHigh-EfficiencyThin-FilmChem.Lett.2020,11,4448−4455.PhotovoltaicsfromFirst-Principles.APLMater.2013,1,No.042111.(39)Hansen,J.P.;McDonald,I.R.TheoryofSimpleLiquids;(22)Quarti,C.;Grancini,G.;Mosconi,E.;Bruno,P.;Ball,J.M.;AcademicPress:LondonandNewYork,1976.Lee,M.M.;Snaith,H.J.;Petrozza,A.;DeAngelis,F.TheRaman(40)Kovalenko,A.;Hirata,F.Three-DimensionalDensityProfilesSpectrumoftheCH3NH3PbI3HybridPerovskite:InterplayofTheoryofWaterinContactwithaSoluteofArbitraryShape:ARISMandExperiment.J.Phys.Chem.Lett.2014,5,279−284.Approach.Chem.Phys.Lett.1998,290,237−244.(23)Motta,C.;El-Mellouhi,F.;Kais,S.;Tabet,N.;Alharbi,F.;(41)Sato,H.;Kovalenko,A.;Hirata,F.Self-ConsistentField,AbSanvito,S.RevealingtheRoleofOrganicCationsinHybridHalideInitioMolecularOrbitalandThree-DimensionalReferenceInter-PerovskiteCH3NH3PbI3.Nat.Commun.2015,6,7026.actionSiteModelStudyforSolvationEffectonCarbonMonoxidein(24)Motta,C.;El-Mellouhi,F.;Sanvito,S.ChargeCarrierMobilityinHybridHalidePerovskites.Sci.Rep.2015,5,12746.AqueousSolution.J.Chem.Phys.2000,112,9463−9468.(25)Carignano,M.A.;Kachmar,A.;Hutter,J.ThermalEffectson(42)Nishihara,S.;Otani,M.HybridSolvationModelsforBulk,CH3NH3PbI3PerovskitefromAbInitioMolecularDynamicsInterface,andMembrane:ReferenceInteractionSiteMethodsSimulations.J.Phys.Chem.C2015,119,8991−8997.CoupledwithDensityFunctionalTheory.Phys.Rev.B:Condens.(26)Mosconi,E.;Quarti,C.;Ivanovska,T.;Ruani,G.;DeAngelis,MatterMater.Phys.2017,96,115429.F.StructuralandElectronicPropertiesofOrgano-HalideLead(43)Kasahara,K.;Sato,H.SolvationStructureofLiClO4/EthylenePerovskites:ACombinedIR-SpectroscopyandAbInitioMolecularCarbonateSolutionnearaGraphiteElectrodeinLithium-IonDynamicsInvestigation.Phys.Chem.Chem.Phys.2014,16,16137−Batteries:3D-RISMStudy.Chem.Lett.2018,47,311−314.16144.(44)Haruyama,J.;Ikeshoji,T.;Otani,M.ElectrodePotentialfrom(27)Carignano,M.A.;Saeed,Y.;Aravindh,S.A.;Roqan,I.S.;Even,DensityFunctionalTheoryCalculationsCombinedwithImplicitJ.;Katan,C.ACloseExaminationoftheStructureandDynamicsofSolvationTheory.Phys.Rev.Mater.2018,2,No.095801.6609https://doi.org/10.1021/acs.jpcc.1c01171J.Phys.Chem.C2021,125,6601−6610

9TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(45)Sato,M.;Imazeki,Y.;Fujii,K.;Nakano,Y.;Sugiyama,M.First-16.48%EfficiencyviaaLow-PressureVapor-AssistedSolutionPrinciplesModelingofGaN(0001)/WaterInterface:EffectofSurfaceProcess.ACSAppl.Mater.Interfaces2017,9,2449−2458.Charging.J.Chem.Phys.2019,150,154703.(64)Weller,M.T.;Weber,O.J.;Frost,J.M.;Walsh,A.Cubic(46)Kovalenko,A.;Hirata,F.Self-ConsistentDescriptionofaPerovskiteStructureofBlackFormamidiniumLeadIodide,α-Metal-WaterInterfacebytheKohn-ShamDensityFunctionalTheory[HC(NH2)2]PbI3,at298K.J.Phys.Chem.Lett.2015,6,3209−3212.andtheThree-DimensionalReferenceInteractionSiteModel.J.(65)Slimi,B.;Mollar,M.;Assaker,I.B.;Kriaa,I.;Chtourou,R.;Chem.Phys.1999,110,10095−10112.Marí,B.PerovskiteFA1‑xMAxPbI3forSolarCells:FilmsFormation(47)Wang,J.;Wolf,R.M.;Caldwell,J.W.;Kollman,P.A.;Case,D.andProperties.EnergyProcedia2016,102,87−95.A.DevelopmentandTestingofaGeneralAmberForceField.J.(66)Chen,H.W.;Gulo,D.P.;Chao,Y.C.;Liu,H.L.Comput.Chem.2004,25,1157−1174.CharacterizingTemperature-DependentOpticalPropertiesof(48)Giannozzi,P.;Baroni,S.;Bonini,N.;Calandra,M.;Car,R.;(MA0.13FA0.87)PbI3SingleCrystalsUsingSpectroscopicEllipsometry.Cavazzoni,C.;Ceresoli,D.;Chiarotti,G.L.;Cococcioni,M.;Dabo,Sci.Rep.2019,9,18253.I.;etal.QUANTUMESPRESSO:AModularandOpen-SourceSoftwareProjectforQuantumSimulationsofMaterialsRelated■NOTEADDEDAFTERASAPPUBLICATIONContentQUANTUMESPRESSO:AModularandOpen-SourceThispaperwaspublishedASAPonMarch16,2021,withanSoftwareProjectforQuantumSimulationsofMaterials.J.Phys.:errorinthelastparagraphoftheMethodsection.TheCondens.Matter2009,21,395502.correctedversionwasrepostedonMarch18,2021.(49)Csonka,G.I.;Perdew,J.P.;Ruzsinszky,A.;Philipsen,P.H.T.;Lebegue,S.;Paier,J.;Vydrov,O.A.;À́ngyán,J.G.AssessingthePerformanceofRecentDensityFunctionalsforBulkSolids.Phys.Rev.B:Condens.MatterMater.Phys.2009,79,155107.(50)Frisch,M.;Trucks,G.;Schlegel,H.;Scuseria,G.Gaussian09;RevisionD.01;Gaussian,Inc.:WallingfordCT,2009.(51)Becke,A.D.Density-FunctionalThermochemistry.III.TheRoleofExactExchange.J.Chem.Phys.1993,98,5648−5652.(52)SousaDaSilva,A.W.;Vranken,W.F.ACPYPE-AnteChamberPYthonParserInterfacE.BMCRes.Notes2012,5,367.(53)Rappé,A.K.;Casewit,C.J.;Colwell,K.S.;Goddard,W.A.;Skiff,W.M.UFF,aFullPeriodicTableForceFieldforMolecularMechanicsandMolecularDynamicsSimulations.J.Am.Chem.Soc.1992,114,10024−10035.(54)Togo,A.;Tanaka,I.FirstPrinciplesPhononCalculationsinMaterialsScience.Scr.Mater.2015,108,1−5.(55)Momma,K.;Izumi,F.VESTA:AThree-DimensionalVisualizationSystemforElectronicandStructuralAnalysis.J.Appl.Crystallogr.2008,41,653−658.(56)Brivio,F.;Frost,J.M.;Skelton,J.M.;Jackson,A.J.;Weber,O.J.;Weller,M.T.;Goñi,A.R.;Leguy,A.M.A.;Barnes,P.R.F.;Walsh,A.LatticeDynamicsandVibrationalSpectraoftheOrthorhombic,Tetragonal,andCubicPhasesofMethylammoniumLeadIodide.Phys.Rev.B:Condens.MatterMater.Phys.2015,92,144308.(57)Saidi,W.A.;Choi,J.J.NatureoftheCubictoTetragonalPhaseTransitioninMethylammoniumLeadIodidePerovskite.J.Chem.Phys.2016,145,144702.(58)Ali,I.O.A.;Joubert,D.P.;Suleiman,M.S.H.ATheoreticalInvestigationofStructural,Mechanical,ElectronicandThermo-electricPropertiesofOrthorhombicCH3NH3PbI3.Eur.Phys.J.B2018,91(10),263.(59)Jacobsson,T.J.;Schwan,L.J.;Ottosson,M.;Hagfeldt,A.;Edvinsson,T.DeterminationofThermalExpansionCoefficientsandLocatingtheTemperature-InducedPhaseTransitioninMethylam-moniumLeadPerovskitesUsingX-RayDiffraction.Inorg.Chem.2015,54,10678−10685.(60)Ge,C.;Hu,M.;Wu,P.;Tan,Q.;Chen,Z.;Wang,Y.;Shi,J.;Feng,J.UltralowThermalConductivityandUltrahighThermalExpansionofSingle-CrystalOrganic-InorganicHybridPerovskiteCH3NH3PbX3(X=Cl,Br,I).J.Phys.Chem.C2018,122,15973−15978.(61)Fabini,D.H.;Stoumpos,C.C.;Laurita,G.;Kaltzoglou,A.;Kontos,A.G.;Falaras,P.;Kanatzidis,M.G.;Seshadri,R.ReentrantStructuralandOpticalPropertiesandLargePositiveThermalExpansioninPerovskiteFormamidiniumLeadIodide.Angew.Chem.2016,128,15618−15622.(62)Jeon,N.J.;Noh,J.H.;Yang,W.S.;Kim,Y.C.;Ryu,S.;Seo,J.;Seok,S.Il.CompositionalEngineeringofPerovskiteMaterialsforHigh-PerformanceSolarCells.Nature2015,517,476−480.(63)Chen,J.;Xu,J.;Xiao,L.;Zhang,B.;Dai,S.;Yao,J.Mixed-Organic-Cation(FA)x(MA)1‑xPbI3PlanarPerovskiteSolarCellswith6610https://doi.org/10.1021/acs.jpcc.1c01171J.Phys.Chem.C2021,125,6601−6610

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭