Modulation of Photoinduced Iodine Expulsion in Mixed Halide Perovskites with Electrochemical Bias - Dubose et al. - 2021 - Unknown

Modulation of Photoinduced Iodine Expulsion in Mixed Halide Perovskites with Electrochemical Bias - Dubose et al. - 2021 - Unknown

ID:81816775

大小:2.92 MB

页数:7页

时间:2023-07-21

上传者:U-14522
Modulation of Photoinduced Iodine Expulsion in Mixed Halide Perovskites with Electrochemical Bias - Dubose et al. - 2021 - Unknown_第1页
Modulation of Photoinduced Iodine Expulsion in Mixed Halide Perovskites with Electrochemical Bias - Dubose et al. - 2021 - Unknown_第2页
Modulation of Photoinduced Iodine Expulsion in Mixed Halide Perovskites with Electrochemical Bias - Dubose et al. - 2021 - Unknown_第3页
Modulation of Photoinduced Iodine Expulsion in Mixed Halide Perovskites with Electrochemical Bias - Dubose et al. - 2021 - Unknown_第4页
Modulation of Photoinduced Iodine Expulsion in Mixed Halide Perovskites with Electrochemical Bias - Dubose et al. - 2021 - Unknown_第5页
Modulation of Photoinduced Iodine Expulsion in Mixed Halide Perovskites with Electrochemical Bias - Dubose et al. - 2021 - Unknown_第6页
Modulation of Photoinduced Iodine Expulsion in Mixed Halide Perovskites with Electrochemical Bias - Dubose et al. - 2021 - Unknown_第7页
资源描述:

《Modulation of Photoinduced Iodine Expulsion in Mixed Halide Perovskites with Electrochemical Bias - Dubose et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCLLetterModulationofPhotoinducedIodineExpulsioninMixedHalidePerovskiteswithElectrochemicalBias∥∥JeffreyT.DuBose,PreethiS.Mathew,JunsangCho,MasaruKuno,andPrashantV.Kamat*CiteThis:J.Phys.Chem.Lett.2021,12,2615−2621ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Holetrappingatiodine(I)sitesinMAPbBr1.5I1.5mixedhalideperovskites(MHP)isresponsibleforiodinemigrationanditseventualexpulsionintosolution.WehavenowmodulatedthephotoinducediodineexpulsioninMHPthroughanexternallyappliedelectrochemicalbias.Atpositivepotentials,electronextractionatTiO2/MHPinterfacesbecomesefficient,leadingtoholebuildupwithinMHPfilms.Thisimprovedchargeseparation,inturn,favorsiodinemigrationasevidentfromtheincreasedapparentrateconstantofiodineexpulsion(k=0.0030s−1).expulsionConversely,atnegativepotentials(−0.3VvsAg/AgCl)electron−holerecombinationisfacilitatedwithinMHP,slowingdowniodineexpulsionbyanorderofmagnitude(k=0.00018s−1).TheexpulsiontuningoftheEFermilevelthroughexternalbiasmodulateselectronextractionattheTiO2/MHPinterfaceandindirectlycontrolsthebuildupofholes,ultimatelyinducingiodinemigration/expulsion.Suppressingiodinemigrationinperovskitesolarcellsisimportantforattaininggreaterstabilitysincetheyoperateunderinternalelectricalbias.nmixedhalideperovskites(MHPs)suchasAPbBr3−xIxandenergybarrierforhalidesegregation/expulsion.WhilemostofIAPbBrCl(Aisacation,e.g.,Cs+ormethylammonium;3−xxthespectroscopicstudiesofhalideionmigrationarefocusedonMA),halideionmobilityleadstolight-inducedandfield-fastertimescalemeasurements,longertimescalemigration1−6inducedsegregationintodistincthalide-richphases.Suchstudiesareneededtoelucidateitsimpactontheoverallphotoinducedhalidesegregationnegativelyimpactsthestabilityphotostability.andefficiencyofdevicesasiodide-richdomainsactaschargeOfnoteisaspectroelectrochemicalapproachthathasbeenrecombinationcenters,greatlydiminishingtheperformanceofusedtodeterminetheconductionandvalencebandpositionsof7,89solarcellsandlight-emittingdiodes.Interestingly,themixedhalideperovskitesandhasrevealedtheirdependenceonentropyofmixingfavorsthemixedhalidephaseinthedark.1028,29halidecomposition.ThecontrolofdefectdensitiesinAthreshold-limitedexcitationenergyisneededtoovercomethisCsPbBr3filmsthroughexternallyappliedbiashasbeenshowntoentropyofmixingtoinducephasesegregation.11,12Upon30modulatetheemissionintensity.Ourrecentsuccessinstoppingphotoirradiation,thesegregatedphasesremixtomaintainingMHPstabilityindichloromethane(DCM)hasrestorethehomogeneousstartingcomposition.Thesecomposi-enabledelectrochemicalandspectroelectrochemicalstudiestoDownloadedviaUNIVOFCONNECTICUTonMay16,2021at06:14:49(UTC).tionalchanges,whichcanbereadilymonitoredthroughopticalproberelevantchargetransferprocessesatperovskite/liquidchanges(e.g.,absorptionandemissionspectra)inthemixedinterfaces.31,32Wehavenowutilizedspectroelectrochemicalhalidefilm,thusenabledirecttrackingofthehalideionmeasurementstosystematicallyvarythedrivingforceforchargeSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.13movement.ThesemethodshavegiveninsightsintotheseparationbymodulatingtheFermilevelthroughexternalbiasmobilityofhalideionsinphysicallypaired3Dand2Dandmonitoringitsinfluenceonhalideionmigration.The14−16perovskites.macroscopictrackingofiodinemigrationunderappliedbiasThemobilityofiodineinmixedhalideperovskitefilmscanprovidesnewinsightsintodegradationpathways.leadtoitsexpulsionunderlong-termirradiation,thusinducingPhotoirradiationofDryversusElectrolyte-ContactingPerovskite17−20instability.ThisphotoinducediodineexpulsioncanbeFilms.Whenmixedhalideperovskites(e.g.,MAPbBr1.5I1.5)arereadilyseenuponirradiatingperovskitefilmsincontactwitha18subjectedtocontinuousphotoirradiation(abovegap),theysolvent(suchasDCMortoluene).Theselectiveremovalof1,2phasesegregateintoBr-andI-richregions.AnincreaseiniodinefromMHPsuponcontinuedirradiationtransformstheabsorbanceinthered(∼675nm)indicatesnewabsorptionperovskitefilmintoabromide-richphase.ItwasalsoshownthatsubstitutingtheMHPA-sitecationwithcesium(Cs)slowsdowniodineexpulsionduetoincreasedthermodynamicReceived:February1,2021stabilizationofMHPlattices.18,21,22SimilarlatticestabilizationAccepted:March2,2021hasbeenshowntoreducephasesegregationinCl-alloyedPublished:March9,202115,23,24perovskites.Surfacetreatmentsand2Dinterfaceshave14,25−27suppressedhalideionmigrationtosomeextent.Suchstrategiesprovideacompositionalmeansofmodifyingthe©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.1c003672615J.Phys.Chem.Lett.2021,12,2615−2621

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.SpectroelectrochemcialdataforFTO/TiO2/MAPbBr1.5I1.5films(0.5mV/ssweeprate)duringthe(A)reductionand(B)oxidationhalfcyclestogetherwiththeabsorbancechangeattheexcitonicpeak(615nm).TheshadedregionineachtracerepresentthestablewindowinwhichnoFaradaicprocessesoccur.Measurementswereperformedin0.01MBu4NPF6inDCMunderdegassedN2conditions(prebubbledthroughDCM).Figure2.AbsorbancespectraofFTO/TiO/MAPbBrIfilmsduring405nmCWphotoirradiation(50mW/cm2)whileheldatappliedbiasesof21.51.5(A)0.5,(B)0,and(C)−0.3VvsAg/AgCl.(D−F)CorrespondingΔAbsorbancegraphsforeachappliedbias,whichhighlightsthelossofabsorbance(bleach)near625nm.DataforallappliedbiasesareshownintheSupportingInformation.Measurementsweremadein0.01MBu4NPF6inDCMunderdegassedN2conditions(prebubbledthroughDCM).arisingfromtheformationofiodine-richdomains,withaabsorbanceduringsteady-statephotoirradiationisobserveddueconcomitantdecreaseinabsorbanceat∼625nmduetototheselectiveexpulsionofiodinespeciesintothesolventdepletionofthemixedphase(FigureS1A;reactions1and2).(reaction5;notethatiodide,iodine,andotherI-speciesplaya18,32roleintheoverallexpulsionprocess).Reactions3−5are−+MAPbBrI1.51.5+→hνMAPbBrI(e1.51.5+→h)facilitatedbyTiO2asitcaptureselectrons,thusaccumulatingMAPbBrI1.51.5+′hν(1)holesinthefilm.Theaccumulatedholescontributetoboth4,18photoinducedphasesegregationandiodineexpulsion.−+11MAPbBrI(e1.51.5+→h)MAPbBr3+MAPbI3MAPbBrI(e,h)−++TiO22(2)1.51.52Uponstoppingphotoirradiation,segregatedregionsremixto+−→+MAPbBrI(h)1.51.5TiO(e)2(3)12attainentropicstabilization(FigureS1B).Interestingly,whenperovskitefilmsareincontactwitha−−solventorelectrolyteacontinuousblueshiftofthebandedgeTiO(e)22+→+FTOTiOFTO(e)(4)2616https://dx.doi.org/10.1021/acs.jpclett.1c00367J.Phys.Chem.Lett.2021,12,2615−2621

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.(A)Monoexponentialfitstothedifferentialabsorbancebleachfeature(625nm)forFTO/TiO2/MAPbBr1.5I1.5filmsphotoirradiatedandheldatpotentialsrangingfrom0.5to−0.3VvsAg/AgCl.DataforallappliedbiasesareshownintheSupportingInformation.(B)Dependenceoftheapparentrateconstantofiodineexpulsion(kexpulsion)determinedfrommonoexponentialfitsin(A)ontheappliedpotential.Thedashedlineismeanttoguidetheeye.++1PhotoinducedIodineExpulsionunderAppliedBias.Thesetup2MAPbBrI1.51.5+→hMAPbBr3+++PbI2MAI2employedforspectroelectrochemicalmeasurementsisshownin2(5)SchemeS1(SI).TheabsorbancespectraofMHPfilmsatthreedifferentbiaspotentials(Figure2A−C)withinthestableFigureS2AshowstheabsorbanceofaMAPbBr1.5I1.5filminelectrochemicalwindowwererecordedduringirradiationwithacontactwith0.01Mtetrabutylammoniumhexafluorophosphate405nmCWdiodelaser(50mW/cm2).Changesinabsorbance(Bu4NPF6)indichloromethane(DCM).Whereasadryduringiodineexpulsionarebettervisualizedthroughdifferenceperovskitefilm(nosolventorelectrolyte)segregatesintoBr-absorbancespectra(Figure2D−F).Ineachcase,alossofandI-richdomains,theperovskitefilmincontactwiththeabsorbanceisseenthroughouttheMAPbBr1.5I1.5absorbanceelectrolyteexpelsiodineintothesolution(FigureS2B).Aswindow,withadistinctbleach(negative)featurenear625nmdiscussedinourpreviousstudy,CsalloyingofMAPbBr1.5I1.5(excitonicpeakofMAPbBr1.5I1.5).Theabsorbancelossandfilmsslowsdowniodinemigrationandrevealstheformationofaconcurrentblueshiftinthespectrumareassociatedwithchargephase-segregatedstatepriortoiodineexpulsion.18Thisstrategy32separationfollowedbyiodineexpulsion(reactions1−5).ofA-sitecationmodificationgreatlysuppressesthethermody-Whentheappliedpotentialwasmaintainedat0.5V,namicsofiodineexpulsion.photoinducediodineexpulsionwasrapidandcompletewithinStableElectrochemicalWindowforaMixedHalidePerovskite.15min(Figure2A,D).At0VvsAg/AgCl,weobserveaToinvestigatetheeffectofanexternallyappliedbias(andthusrelativelysloweriodineexpulsionprocess(Figure2B,E).EvenEFermi)onthephotoinducediodineexpulsionprocess,wefirstafter60minofirradiation,filmsretainasmallabsorptionfeatureestablishedastableelectrochemicalworkingwindowinwhichataround615nm,indicatingtheincompleteexpulsionofiodinenoFaradaicprocessesoccur(i.e.,noelectrochemicallyinducedfromfilms.Forafilmheldatanappliedbiasof−0.3VvsAg/redoxevents)inthedark.FilmsofMAPbBr1.5I1.5weredepositedAgCl,onlyasmallchangeinabsorptionisseen(Figure2C,F).ontoTiO2-coatedFTO(fluorine-dopedtinoxide)electrodesThisslowerexpulsionatthenegativepotentialindicatesthatthe4usingpreviouslyreportedmethods.TiO2isusedasanelectroniodinemigrationbecomeslessefficientandonlyasmallamounttransportlayer(ETL)inperovskitesolarcellsandwasthusofiodineescapesfromthefilmintothesolution.(Absorptionselectedforthisstudy.TheresultantFTO/TiO2/MAPbBr1.5I1.5spectraoftheelectrolytesolutionattheseappliedbiasesarefilmswereimmersedin0.01MBu4NPF6inDCM,andshowninFigureS5.)WehaveestimatedthequantumefficiencyelectrochemicalexperimentswereperformedunderdegassedofiodineexpulsionbasedonthesolutionabsorbanceofI−and3conditions(N2wasprebubbledthroughDCMtoreducesolventtheincidentlaserpower.Thequantumefficiencyforiodine31,32loss).expulsionwas0.042%at0.5Vand0.0044%at−0.3VandDuringthisreductionscan(Figure1A),wecanclearlyseeaagreedwiththetrendobservedinFigure2.(SeetheSupportinglargedecreaseintheabsorbanceoftheperovskiteduetotheInformationforquantumefficiencymeasurements.)reductionofPbtoPb0(−0.77V).Similarly,whenwescannedTheabsorbanceandcorrespondingdifferenceabsorbancethepotentialinthepositivedirection(Figure1B)wecouldseeaspectraofphotoirradiatedMHPfilmsatotherappliedpotentialsdistinctfeaturecorrespondingtotheoxidationofthehalideions(between+0.5and−0.3VvsAg/AgCl)areshowninFiguresataround1V.TheabsenceofaFaradaiccurrentandnolossinS6−S9.Theabsorbancelossat625nm,whichrepresentsthetheabsorbancewithintheelectrochemicalwindow,−0.3VanddisappearanceofMHP,wasrecordedatdifferenttimestoobtain+0.5V(shadedregionsinFigure1A,B),ensuredthatwecouldiodineexpulsionkinetics(Figures3AandS10).EachtracewascontroltheEFermioftheelectrodewithoutinducinganfittoamonoexponentialdecaytodeterminetheapparentrateelectrochemicalreactionattheperovskite−electrolyteinterface.constantsofiodineexpulsion.At0.5VvsAg/AgCl,theapparentToconfirmthestabilityofourperovskitefilmsinthispotentialrateconstant,k,wasdeterminedtobe0.003s−1andisanexpulsionwindowoverlongertimes,werecordedabsorbancespectraoforderofmagnitudegreaterthantheoneobservedatnegativethefilmsheldatselectbiaspotentialsfor60mininthedarkpotentials(k=0.00018s−1at−0.3V).Thedependenceexpulsion(FiguresS3andS4).oftheapparentrateconstantofphotoinducediodineexpulsion2617https://dx.doi.org/10.1021/acs.jpclett.1c00367J.Phys.Chem.Lett.2021,12,2615−2621

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure4.(A)J−VcurvesforMAPbBrIfilmsonanFTO/TiOelectrodein(a)thedarkand(b)under405nmCWirradiation(50mW/cm2).1.51.52Measurementswereperformedin0.01MBu4NPF6inDCMunderdegassed(N2saturated)conditions.(B,C)BanddiagramschemedepictingthepathwaysforchargecarrierswhenFTO/TiO2/MAPbBr1.5I1.5filmsarephotoirradiatedandheldat(B)positivebias(+0.5V)and(C)negativebias(−0.3V)(vsAg/AgCl).TheshiftingoftheFermilevel(EFermi)oftheelectrodeanditseffectonelectronpathwaysisexplicitlyshown.Conductionandvalencebandenergylevelsofsemiconductorsareobtainedfrompreviouswork(refs1and10).Figure5.Top-viewSEMmicrographsofFTO/TiO2/MAPbBr1.5I1.5films.(A)Beforeapplyingbiasorphotoirradiation(pristine).(B−D)Filmsirradiatedfor15minwitha405nmCWlaserwhileheldat(B)−0.3,(C)0,and(D)0.5VvsAg/AgCl.Thevoidspaceswhichstarttoappearat0Vincreaseinsizeat0.5Vappliedbias.Thesemorphologicalchangesseenin(C)and(D)aretheresultofiodineexpulsion.ontheappliedpotentialisshowninFigure3B.Atpotentialsredoxcouplepresentinthissetup,theobservedphotocurrentismorenegativethan0VvsAg/AgCl,kexpulsionremainsunaffected.relativelylow.Followingband-gapexcitation,electronsfromHowever,withtheincreaseintheappliedpotential(greaterthanMAPbBr1.5I1.5arequicklytransferredtoTiO2(reaction3)due4,37,380V),weobserveanincreaseinkexpulsion.Itisinterestingthatthetoitsfavorablyalignedconductionband.TheseelectronselectrochemicalbiasappliedtotheTiO2/MHPfilminfluencesareextractedintotheFTOelectrode(reaction4)togenerateathephotoinducedmigrationofiodineandtheultimatephotocurrent.TheJ−VcharacteristicsinFigure4oftheFTO/expulsionofiodine.ThisfurtherconfirmsourabilitytoTiO2/MAPbBr1.5I1.5filmsunder(a)darkand(b)405nmCWmodulatethephotoinducedmigrationofiodineintheMHPirradiation(50mW/cm2)exhibitn-typesemiconductorfilmthroughanexternallyappliedelectrochemicalbias.behavior.Thus,theappliedbiasdirectlydictatestheFermiPreviously,weshowedthatanexcitationintensitythresholdleveloftheperovskitefilmand,inturn,chargeseparationwithin11,12,15,33existsforlight-inducedhalidesegregation.Athermody-thespacechargelayer.namicbalancebetweenthedrivingforceforhalidesegregationTheapplicationofexternalbiasinthepotentialrangeof−0.3(whichisproportionaltolightintensity)andtheentropyofto+0.5Vaffectsthechargeseparationintheperovskitefilm,mixingdictatestheinteraction.WefoundthatiodineexpulsionshiftingtheapparentFermilevel(EFermi)oftheelectrodeeitherfromfilmsheldatdifferentpotentialsexhibitsasimilarexcitationclosertoorawayfromtheTiO2conductionband.Figure4B,Cintensitythreshold.Detailsofthethresholdintensitydetermi-illustratesthephotoinducedchargeseparationandthenationcanbefoundintheSupportingInformation,andinterfacialchargetransferundertheinfluenceofanexternalindividualabsorbancespectraareshowninFigureS11.At0.5Vbias.Atpositivebias(e.g.,+0.5VvsAg/AgCl),EFermifavorsvsAg/AgCl,theIvaluewasthelowest(∼65μW/cm2).electronflowfromMHPtoTiOandfromTiOtoFTOThreshold22AsEFermiisincreasedbyapplyingamorenegativepotential,the(pathways2and3,Figure4B).TheaccumulatedholesinthresholdintensityrequiredtoobserveiodineexpulsionMAPbBr1.5I1.5gettrappedattheiodidesite,whichintroduces39increases4-foldfornegativepotentialsof0and−0.3VvsAg/instabilitywithinthelattice.BecauseofthelargerfractionofAgCl,respectively(∼290μW/cm2;FigureS12).holeaccumulationatpositivepotentials,iodinemigrationPhotoelectrochemicalResponseofMAPbBr1.5I1.5Filmsonanfollowedbyitsexpulsionoccursatafasterrate.However,FTO/TiO2Electrode.Anotherwaytoconfirmtheappliedwhenweapplyanegativebias(0to−0.3VvsAg/AgCl),EFermipotentialdependenceofchargetransferprocessesistoprobeshiftstowardtheconductionbandofTiO2.Thislowersthe34−36photocurrentgenerationatperovskite/liquidinterfaces.Athermodynamicdrivingforceforelectroninjection,givingrisetophotocurrentdensityof∼5μA/cm2isgeneratedwhentheagreaterdegreeofchargerecombination(pathways4and5,FTO/TiO2/MAPbBr1.5I1.5filmsareirradiatedinaphoto-Figure4C).Thischargerecombinationminimizesholeelectrochemicalcell(Figure4A).BecauseofthelackofaaccumulationinMAPbBr1.5I1.5,andthusweseesloweriodine2618https://dx.doi.org/10.1021/acs.jpclett.1c00367J.Phys.Chem.Lett.2021,12,2615−2621

4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterexpulsion.Thehole-inducedoxidationoranodiccorrosionofpresentedinthisstudyfurtherconfirmsthenecessityofholeshortbandgapsemiconductorssuchasmetalchalcogenidesinlocalizationattheiodinesiteastheprimarystepresponsiblefor40−42photoelectrochemicalcellshasbeenwellstudied.Insuchthemigrationifiodineisinthefilm.instances,thesurfaceoxidationcreatesapassivelayeronthesurfaceofthesemiconductorasthesurfacegetsoxidized.In■ASSOCIATEDCONTENTMHPfilms,however,theinteractionwithholesmakesiodine*sıSupportingInformationmigratetotheinterfaceandgetexpelledintothesolution.TheTheSupportingInformationisavailablefreeofchargeatprocesscontinuesuntilalloftheiodineisexpelled,leavinghttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c00367.behindaMAPbBr3perovskitefilm.Materials;preparationmethodsforFTO/TiO/perov-2MorphologicalChangesAssociatedwithIodineExpulsion.Theskiteelectrodes;electrochemicalmeasurements;iodineimpactonthemorphologyoftheperovskitefilmsduetoexpulsionmeasurements;XPSdataandanalysis;detailsofphotoinducediodineexpulsionunderappliedbiaswasprobedtheSEMmeasurement;quantumefficiencycalculation;usingscanningelectronmicroscopy(SEM).PristineMHPfilmsthresholdintensitycalculation;filmstabilitytests;and(beforeirradiation/appliedbias)showacleansurfacewithnoindividualabsorbancespectra(PDF)noticeablepinholesorvoids(Figure5A).However,uponexposureto405nmirradiationfor15minthefilmsexhibitvoids,■thedegreetowhichisdependentontheappliedbias.At−0.3VAUTHORINFORMATIONvsAg/AgCl,weobserveonlyasmallnumberofpinholes(FigureCorrespondingAuthor5B).At0V,largerpinholesareobserved,andat0.5V,thesePrashantV.Kamat−NotreDameRadiationLaboratory,pinholesgrowintolargervoids,indicatingagreaterdegreeofDepartmentofChemistryandBiochemistry,andDepartmenttransformationofthematerial(Figure5C,D).AsseeninourofChemicalandBiomolecularEngineering,UniversityofNotrepreviouselectrochemical51andphotochemicalstudies,18theDame,NotreDame,Indiana46556,UnitedStates;perovskitestructureisreconfiguredfollowingiodineexpulsion,orcid.org/0000-0002-2465-6819;Email:pkamat@leadingtopoorfilmmorphology.nd.eduWealsoperformedXPSmeasurementsontheperovskitefilmsAuthorstoassessthechangeincompositionthatoccurredduringiodineJeffreyT.DuBose−NotreDameRadiationLaboratoryandexpulsion.TheXPSspectraareshowninFigureS13,andtheDepartmentofChemistryandBiochemistry,UniversityofresultsaresummarizedinTableS3forfilmsheldat0.5,0,andNotreDame,NotreDame,Indiana46556,UnitedStates;−0.3VvsAg/AgCl.Thefilmheldat0.5Vappliedbiasshowedaorcid.org/0000-0002-7708-4703largeenhancementinbromineduetothegreaterdegreeofPreethiS.Mathew−NotreDameRadiationLaboratoryandiodineremovalfromthefilm.WhenEFermiisshiftedhigher(0VDepartmentofChemistryandBiochemistry,UniversityofvsAg/AgCl),thefilmsstillexpeliodineandbecomebromine-NotreDame,NotreDame,Indiana46556,UnitedStatesrich,buttoamuchsmallerdegree.WhenEFermiisshiftedtotheJunsangCho−NotreDameRadiationLaboratory,Universityhighestvalue(−0.3VvsAg/AgCl),theBr/IratioremainsofNotreDame,NotreDame,Indiana46556,UnitedStates;mostlythesame,inlinewiththesmallamountofiodineorcid.org/0000-0003-4211-4113expulsion.MasaruKuno−DepartmentofChemistryandBiochemistry,VariousmodelshavebeenproposedtoexplainphotoinducedUniversityofNotreDame,NotreDame,Indiana46556,ionicconductivityandhalidemigration.Theseincludethe43UnitedStates;orcid.org/0000-0003-4210-8514miscibilitygapbetweendarkandilluminatedconditions,polaronformationandassociatedlatticestrain,13,44−46trappedCompletecontactinformationisavailableat:carriergradientasaresultofinhomogeneousexcitationandhttps://pubs.acs.org/10.1021/acs.jpclett.1c0036747defect-assistedmigration,andpositivefreeenergiesofmixingunderillumination.12,33InaphotosegregatedMHPfilm,AuthorContributions∥isoenergeticconductionbandpositionsforMAPb(BrxI1−x)3,J.T.D.andP.S.M.contributedequally.MAPbI3,andMAPbBr3andvalencebandoffsetsofupto0.26−Notes0.67eVfavorholelocalizationortrappinginI-richregions.48−50Theauthorsdeclarenocompetingfinancialinterest.Thetimescalewithwhichvariousprocessescontributetohalidemigrationvary.WhereasthefunnelingofchargecarrierstotheI-■ACKNOWLEDGMENTSrichregionhasbeenconfirmedspectroscopicallytooccurintheTheauthorsthankDr.IanLightcapoftheNotreDame51,52timeframeof10−100ps,halidesegregationoccursoveraMaterialsCharacterizationFacility(MCF)forhelpwithandperiodofseveralsecondstominutes.TheultimateexpulsionofdiscussionsaboutXPS,alongwiththeNotreDameIntegratediodineoccursonamuchlongertimescale(minutestohours).ImagingFacility(NDIIF)foruseoftheSEM.J.T.D.andP.S.M.SuchslowerexpulsionofiodinehasalsobeenobservedinfilmsthankGergelySamuforhelpfuldiscussionsregardingelectro-17incontactwithtoluene.Themacroscaleiodineexpulsionchemicalexperiments.J.T.D.acknowledgessupportfromtheprobedinthepresentstudyfurtherservesasarapidtesttoPatrickandJanaEilersGraduateStudentFellowship.J.T.D.andevaluatetheperovskiteinstabilitycausedbyiodinemigration.P.V.K.acknowledgesupportbytheDivisionofChemicalThetrappingofholesatiodinesitesduringphotoirradiationSciences,Geosciences,andBiosciences,OfficeofBasicEnergycausesiodineionstomigratetowardgrainboundaries,thusSciencesoftheU.S.DepartmentofEnergy(awardDE-FC02-inducingtheformationofiodine-richphasesandbromide-rich04ER15533)forconductingspectroelectrochemicalmeasure-44,53−56phasesindryfilms.Whenmixedhalideperovskitefilmsmentsanddiscussions.P.S.M.andM.K.acknowledgetheareincontactwithsolution,however,themigrationofiodineDivisionofMaterialsSciencesandEngineeringOfficeofBasicextendsbeyondphasesegregationasitgetsexpelledintoEnergySciencesoftheU.S.DepartmentofEnergythroughsolution.TheelectrochemicalmodulationofiodineexpulsionAwardDE-SC0014334forcarryingoutiodineexpulsion2619https://dx.doi.org/10.1021/acs.jpclett.1c00367J.Phys.Chem.Lett.2021,12,2615−2621

5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterexperiments,analysisofthedata,anddiscussions.ThisisontheOtherSide:HowLightTransformsSelf-AssembledMixedcontributionnumberNDRLNo.5297fromtheNotreDameHalidePerovskiteNanocrystals.ACSEnergyLett.2020,5,1465−1473.RadiationLaboratory.(20)Wang,S.H.;Jiang,Y.;Juarez-Perez,E.J.;Ono,L.K.;Qi,Y.B.AcceleratedDegradationofMethylammoniumLeadIodidePerovskitesInducedbyExposuretoIodineVapour.Nat.Energy2017,2,16195.■REFERENCES(21)Sutter-Fella,C.M.;etal.Cation-DependentLight-Induced(1)Hoke,E.T.;Slotcavage,D.J.;Dohner,E.R.;Bowring,A.R.;HalideDemixinginHybridOrganic−InorganicPerovskites.NanoLett.Karunadasa,H.I.;McGehee,M.D.ReversiblePhotoinducedTrap2018,18,3473−3480.FormationinMixed-HalideHybridPerovskitesforPhotovoltaics.(22)Ferdani,D.W.;etal.PartialCationSubstitutionReducesIodideChem.Sci.2015,6,613−617.IonTransportinLeadIodidePerovskiteSolarCells.EnergyEnviron.Sci.(2)Brennan,M.C.;Draguta,S.;Kamat,P.V.;Kuno,M.Light-2019,12,2264−2272.(23)Xu,J.;etal.Triple-HalideWide−BandGapPerovskiteswithInducedAnionPhaseSegregationinMixedHalidePerovskites.ACSSuppressedPhaseSegregationforEfficientTandems.Science2020,EnergyLett.2018,3,204−213.367,1097−1104.(3)Li,W.,etal.PhaseSegregationEnhancedIonMovementin(24)Ma,D.X.;etal.ChlorideInsertion-ImmobilizationEnablesEfficientInorganicCsPbIBr2SolarCells.Adv.EnergyMater.2017,7,Bright,Narrowband,andStableBlue-EmittingPerovskiteDiodes.J.1700946.Am.Chem.Soc.2020,142,5126−5134.(4)DuBose,J.T.;Kamat,P.V.TiO2-AssistedHalideIonSegregation(25)Xiao,Z.;etal.Mixed-HalidePerovskiteswithStabilizedinMixedHalidePerovskiteFilms.J.Am.Chem.Soc.2020,142,5362−Bandgaps.NanoLett.2017,17,6863−6869.5370.(26)Huang,Z.;etal.SuppressedIonMigrationinReduced-(5)Brennan,M.C.;Ruth,A.;Kamat,P.V.;Kuno,M.PhotoinducedDimensionalPerovskitesImprovesOperatingStability.ACSEnergyAnionSegregationinMixedHalidePerovskites.TrendsinChemistryLett.2019,4,1521−1527.2020,2,282−301.(27)Lin,Y.-H.;etal.APiperidiniumSaltStabilizesEfficientMetal-(6)Vicente,J.R.;Chen,J.PhaseSegregationandPhotothermalHalidePerovskiteSolarCells.Science2020,369,96−102.RemixingofMixed-HalideLeadPerovskites.J.Phys.Chem.Lett.2020,(28)Ravi,V.K.;Markad,G.B.;Nag,A.BandEdgeEnergiesand11,1802−1807.ExcitonicTransitionProbabilitiesofColloidalCsPbX3(X=Cl,Br,I)(7)Samu,G.F.;Janáky,C.;Kamat,P.V.AVictimofHalideIonPerovskiteNanocrystals.ACSEnergyLett.2016,1,665−671.Segregation.HowLightSoakingAffectsSolarCellPerformanceof(29)Shallcross,R.C.;Zheng,Y.;Saavedra,S.S.;Armstrong,N.R.MixedHalideLeadPerovskites.ACSEnergyLett.2017,2,1860−1861.DeterminingBand-EdgeEnergiesandMorphology-DependentStabil-(8)Balakrishna,R.G.;Kobosko,S.M.;Kamat,P.V.MixedHalideityofFormamidiniumLeadPerovskiteFilmsUsingSpectroelec-PerovskiteSolarCells.ConsequenceofIodideTreatmentonPhasetrochemistryandPhotoelectronSpectroscopy.J.Am.Chem.Soc.2017,SegregationRecovery.ACSEnergyLett.2018,3,2267−2272.139,4866−4878.(9)Vashishtha,P.;Halpert,J.E.Field-DrivenIonMigrationand(30)Lorenzon,M.;etal.RoleofNonradiativeDefectsandColorInstabilityinRed-EmittingMixedHalidePerovskiteNanocrystalEnvironmentalOxygenonExcitonRecombinationProcessesinLight-EmittingDiodes.Chem.Mater.2017,29,5965−5973.CsPbBr3PerovskiteNanocrystals.NanoLett.2017,17,3844−3853.(10)Elmelund,T.;Scheidt,R.A.;Seger,B.;Kamat,P.V.Bidirectional(31)Samu,G.F.;Scheidt,R.A.;Kamat,P.V.;Janáky,C.HalideIonExchangeinPairedLeadHalidePerovskiteFilmswithElectrochemistryandSpectroelectrochemistryofLeadHalidePerov-ThermalActivation.ACSEnergyLett.2019,4,1961−1969.skiteFilms:MaterialsScienceAspectsandBoundaryConditions.Chem.(11)Ruth,A.;Brennan,M.C.;Draguta,S.;Morozov,Y.V.;Mater.2018,30,561−569.Zhukovskyi,M.;Janko,B.;Zapol,P.;Kuno,M.Vacancy-Mediated(32)Samu,G.F.;Balog,Á.;DeAngelis,F.;Meggiolaro,D.;Kamat,P.AnionPhotosegregationKineticsinMixedHalideHybridPerovskites:V.;Janáky,C.ElectrochemicalHoleInjectionSelectivelyExpelsIodideCoupledKineticMonteCarloandOpticalMeasurements.ACSEnergyfromMixedHalidePerovskiteFilms.J.Am.Chem.Soc.2019,141,Lett.2018,3,2321−2328.10812−10820.(12)Elmelund,T.;Seger,B.;Kuno,M.;Kamat,P.V.HowInterplay(33)Draguta,S.;Sharia,O.;Yoon,S.J.;Brennan,M.C.;Morozov,Y.betweenPhotoandThermalActivationDictatesHalideIonV.;Manser,J.M.;Kamat,P.V.;Schneider,W.F.;Kuno,M.SegregationinMixedHalidePerovskites.ACSEnergyLett.2020,5,RationalizingtheLight-InducedPhaseSeparationofMixedHalide56−63.Organic-InorganicPerovskites.Nat.Commun..2018,8,200.(13)Muscarella,L.A.;etal.LatticeCompressionIncreasesthe(34)Kojima,A.;Teshima,K.;Shirai,Y.;Miyasaka,T.OrganometalActivationBarrierforPhaseSegregationinMixed-HalidePerovskites.HalidePerovskitesasVisible-LightSensitizersforPhotovoltaicCells.J.ACSEnergyLett.2020,5,3152−3158.Am.Chem.Soc.2009,131,6050−6051.(14)Belisle,R.A.;Bush,K.A.;Bertoluzzi,L.;Gold-Parker,A.;Toney,(35)Im,J.-H.;Lee,C.-R.;Lee,J.-W.;Park,S.-W.;Park,N.-G.6.5%M.F.;McGehee,M.D.ImpactofSurfacesonPhotoinducedHalideEfficientPerovskiteQuantum-Dot-SensitizedSolarCell.Nanoscale.SegregationinMixed-HalidePerovskites.ACSEnergyLett.2018,3,Nanoscale2011,3,4088−4093.2694−2700.(36)Hsu,H.-Y.;Ji,L.;Ahn,H.S.;Zhao,J.;Yu,E.T.;Bard,A.J.A(15)Cho,J.;Kamat,P.V.HowChlorideSuppressesPhotoinducedLiquidJunctionPhotoelectrochemicalSolarCellBasedonp-TypePhaseSegregationinMixedHalidePerovskites.Chem.Mater.2020,32,MeNH3PbI3Perovskitewith1.05VOpen-CircuitPhotovoltage.J.Am.6206−6212.Chem.Soc.2015,137,14758−14764.(16)Cho,J.;DuBose,J.T.;Le,A.N.T.;Kamat,P.V.Suppressed(37)Scheidt,R.A.;Samu,G.F.;Janáky,C.;Kamat,P.V.ModulationHalideIonMigrationin2DLeadHalidePerovskites.ACSMaterialsofChargeRecombinationinCsPbBr3PerovskiteFilmswithElectro-Lett.2020,2,565−570.chemicalBias.J.Am.Chem.Soc.2018,140,86−89.(17)Kim,G.Y.;Senocrate,A.;Yang,T.-Y.;Gregori,G.;Grätzel,M.;(38)Scheidt,R.A.;Kerns,E.;Kamat,P.V.InterfacialChargeTransferMaier,J.LargeTunablePhotoeffectonIonConductioninHalidebetweenExcitedCsPbBr3NanocrystalsandTiO2:ChargeInjectionPerovskitesandImplicationsforPhotodecomposition.Nat.Mater.versusPhotodegradation.J.Phys.Chem.Lett.2018,9,5962−5969.2018,17,445−449.(39)Motti,S.G.,etal.ControllingCompetingPhotochemical(18)Mathew,P.S.;Samu,G.F.;Janáky,C.;Kamat,P.V.Iodine(I)ReactionsStabilizesPerovskiteSolarCells.Nat.Photon.2019,13,532.ExpulsionatPhotoirradiatedMixedHalidePerovskiteInterface.(40)Ellis,A.B.;Kaiser,S.W.;Bolts,J.M.;Wrighton,M.S.Studyofn-ShouldIStayorShouldIGo?ACSEnergyLett.2020,5,1872−1880.typeSemiconductingCadmiumChalcogenide-BasedPhotoelectro-(19)Brennan,M.C.;Toso,S.;Pavlovetc,I.M.;Zhukovskyi,M.;chemicalCellsEmployingPolychalcogenideElectrolytes.J.Am.Chem.Marras,S.;Kuno,M.;Manna,L.;Baranov,D.SuperlatticesareGreenerSoc.1977,99,2839−2848.2620https://dx.doi.org/10.1021/acs.jpclett.1c00367J.Phys.Chem.Lett.2021,12,2615−2621

6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter(41)Tenne,R.PerformanceandStabilityofCdSe/PolysulfidePhotoelectrochemicalCellsUnderChoppedIllumination.J.Electroa-nal.Chem.InterfacialElectrochem.1983,143,113−20.(42)Bang,J.H.;Kamat,P.V.QuantumDotSensitizedSolarCells.ATaleofTwoSemiconductorNanocrystals:CdSeandCdTe.ACSNano2009,3,1467−1476.(43)Brivio,F.;Caetano,C.;Walsh,A.ThermodynamicOriginofPhotoinstabilityintheCH3NH3Pb(I1−xBrx)3HybridHalidePerovskiteAlloy.J.Phys.Chem.Lett.2016,7,1083−1087.(44)Bischak,C.G.;Hetherington,C.L.;Wu,H.;Aloni,S.;Ogletree,D.F.;Limmer,D.T.;Ginsberg,N.S.OriginofReversiblePhotoinducedPhaseSeparationinHybridPerovskites.NanoLett.2017,17,1028−1033.(45)Bischak,C.G.;Wong,A.B.;Lin,E.;Limmer,D.T.;Yang,P.;Ginsberg,N.S.TunablePolaronDistortionsControltheExtentofHalideDemixinginLeadHalidePerovskites.J.Phys.Chem.Lett.2018,9,3998−4005.(46)Wang,X.;etal.SuppressedPhaseSeparationofMixed-HalidePerovskitesConfinedinEndotaxialMatrices.Nat.Commun.2019,10,695.(47)Barker,A.J.;etal.Defect-AssistedPhotoinducedHalideSegregationinMixed-HalidePerovskiteThinFilms.ACSEnergyLett.2017,2,1416−1424.(48)Schulz,P.;Edri,E.;Kirmayer,S.;Hodes,G.;Cahen,D.;Kahn,A.InterfaceEnergeticsinOrgano-MetalHalidePerovskite-BasedPhoto-voltaicCells.EnergyEnviron.Sci.2014,7,1377−1381.(49)Butler,K.T.;Frost,J.M.;Walsh,A.BandAlignmentoftheHybridHalidePerovskitesCH3NH3PbCl3,CH3NH3PbBr3andCH3NH3PbI3.Mater.Horiz.2015,2,228−231.(50)Yoon,S.J.;Draguta,S.;Manser,J.S.;Sharia,O.;Schneider,W.F.;Kuno,M.;Kamat,P.V.TrackingIodideandBromideIonSegregationinMixedHalideLeadPerovskitesduringPhotoirradiation.ACSEnergyLett.2016,1,290−296.(51)Hoffman,J.B.;Schleper,A.L.;Kamat,P.V.TransformationofSinteredCsPbBr3NanocrystalstoCubicCsPbI3andGradientCsPbBrxI3−xthroughHalideExchange.J.Am.Chem.Soc.2016,138,8603−8611.(52)Scheidt,R.A.;Kamat,P.V.Temperature-DrivenAnionMigrationinGradientHalidePerovskites,J.Chem.Phys.2019,151,134703.(53)Li,W.;etal.PhaseSegregationEnhancedIonMovementinEfficientInorganicCsPbIBr2SolarCells.Adv.EnergyMater.2017,7,1700946.(54)Rehman,W.;McMeekin,D.P.;Patel,J.B.;Milot,R.L.;Johnston,M.B.;Snaith,H.J.;Herz,L.M.PhotovoltaicMixed-CationLeadMixed-HalidePerovskites:LinksbetweenCrystallinity,Photo-stabilityandElectronicProperties.EnergyEnviron.Sci.2017,10,361−369.(55)Tang,X.;vandenBerg,M.;Gu,E.;Horneber,A.;Matt,G.J.;Osvet,A.;Meixner,A.J.;Zhang,D.;Brabec,C.J.LocalObservationofPhaseSegregationinMixed-HalidePerovskite.NanoLett.2018,18,2172−2178.(56)Knight,A.J.;Patel,J.B.;Snaith,H.J.;Johnston,M.B.;Herz,L.M.TrapStates,ElectricFields,andPhaseSegregationinMixed-HalidePerovskitePhotovoltaicDevices.Adv.EnergyMater.2020,10,1903488.2621https://dx.doi.org/10.1021/acs.jpclett.1c00367J.Phys.Chem.Lett.2021,12,2615−2621

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭