高中数学选修2-2教案(完整版)

ID:8154268

大小:1.15 MB

页数:67页

时间:2018-03-08

高中数学选修2-2教案(完整版)_第1页
高中数学选修2-2教案(完整版)_第2页
高中数学选修2-2教案(完整版)_第3页
高中数学选修2-2教案(完整版)_第4页
高中数学选修2-2教案(完整版)_第5页
资源描述:

《高中数学选修2-2教案(完整版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高中数学选修2-2教案第二章推理与证明2.1合情推理与演绎推理§2.1.1合情推理与演绎推理(一)【内容分析】:归纳是重要的推理方法,在掌握一定的数学基础知识(如数列、立体几何、空间向量等等)后,对数学问题的探究方法加以总结,上升为思想方法。【教学目标】:1、知识与技能:(1)结合数学实例,了解归纳推理的含义(2)能利用归纳方法进行简单的推理,2、过程与方法:通过课例,加深对归纳这种思想方法的认识。3、情感态度与价值观:体验并认识归纳推理在数学发现中的作用。【教学重点】:(1)体会并实践归纳推理的探索过程(2)归纳推理的局限【教学难点】:引导和训练学生从已知的线索中归纳出

2、正确的结论【教学过程设计】:教学环节教学活动设计意图一、问题情景学生阅读1、哥德巴赫猜想:观察4=2+2,6=3+3,8=5+3,10=5+5,12=5+7,12=7+7,16=13+3,18=11+7,20=13+7,……,50=13+37,……,100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和.1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想.1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”.2、费马猜想:法国业余数学家之王—费马(1601-166

3、5)在1640年通过对,,,,的观察,发现其结果都是素数,于是提出猜想:对所有的自然数,任何形如的数都是素数.引入课题通过阅读教材感受归纳推理的魅力从哥德巴赫猜想引出归纳推理概念67高中数学选修2-2教案后来瑞士数学家欧拉,发现不是素数,推翻费马猜想.3、四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了1

4、00亿逻辑判断,完成证明.二、概念教学①概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理.②归纳练习:(i)由铜、铁、铝、金、银能导电,能归纳出什么结论?(ii)由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论?(iii)观察等式:,能得出怎样的结论?③讨论:(i)统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理?(ii)归纳推理有何作用?(发现新事实,获得新结论,是做出科学发现的重要手段)(iii)归纳

5、推理的结果是否正确?(不一定)三、例题讲解例1:已知数列的第1项,且,试归纳出通项公式.(分析思路:试值n=1,2,3,4→猜想→如何证明:将递推公式变形,再构造新数列)思考:证得某命题在n=n时成立;又假设在n=k时命题成立,再证明n=k+1时命题也成立.由这两步,可以归纳出什么结论?(目的:渗透数学归纳法原理,即基础、递推关系)板书分析过程,提问a2,a3,a4等几项的计算结果设问:能直接解出an吗?四、课堂训练1、已知,推测的表达式.2、三角形的内角和是1800,凸四边形的内角和是3600,凸五边形的内角和是5400,……由这些结论猜想凸n边形的内角和公式。解析:凸

6、n边形的内角和公式是(n-2)×1800.根据学生基础情况,决定是当堂引导学生证明结论或者是课外完成。67高中数学选修2-2教案3、由归纳猜想出一个一般结论。解析:猜想:(a,b,m均为正实数)。五、小结1.归纳推理的几个特点1)归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.2)归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.3)归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.注:归纳是立足于观察、经验、实验和对有限资料分析的基础上.提出带有规律性的结论2.归纳推理的一般步骤:1)对已有的资料

7、进行观察、分析、归纳、整理;2)猜想3)检验1)规律性2)探索性3)观察、试验的不确定性指出对归纳推理的结果进行检验是必要的归纳推理【练习与测试】:(基础题)1)数列…中的等于()A.B.C.D.2)从中得出的一般性结论是_____________。3)定义的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果可能是().(1)(2)(3)(4)(A)(B)A.B.C.D.4)有10个顶点的凸多面体,它的各面多边形内角总和是________.5)在一次珠宝展览会上,某商家展出一套珠宝首

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《高中数学选修2-2教案(完整版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高中数学选修2-2教案第二章推理与证明2.1合情推理与演绎推理§2.1.1合情推理与演绎推理(一)【内容分析】:归纳是重要的推理方法,在掌握一定的数学基础知识(如数列、立体几何、空间向量等等)后,对数学问题的探究方法加以总结,上升为思想方法。【教学目标】:1、知识与技能:(1)结合数学实例,了解归纳推理的含义(2)能利用归纳方法进行简单的推理,2、过程与方法:通过课例,加深对归纳这种思想方法的认识。3、情感态度与价值观:体验并认识归纳推理在数学发现中的作用。【教学重点】:(1)体会并实践归纳推理的探索过程(2)归纳推理的局限【教学难点】:引导和训练学生从已知的线索中归纳出

2、正确的结论【教学过程设计】:教学环节教学活动设计意图一、问题情景学生阅读1、哥德巴赫猜想:观察4=2+2,6=3+3,8=5+3,10=5+5,12=5+7,12=7+7,16=13+3,18=11+7,20=13+7,……,50=13+37,……,100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和.1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想.1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”.2、费马猜想:法国业余数学家之王—费马(1601-166

3、5)在1640年通过对,,,,的观察,发现其结果都是素数,于是提出猜想:对所有的自然数,任何形如的数都是素数.引入课题通过阅读教材感受归纳推理的魅力从哥德巴赫猜想引出归纳推理概念67高中数学选修2-2教案后来瑞士数学家欧拉,发现不是素数,推翻费马猜想.3、四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了1

4、00亿逻辑判断,完成证明.二、概念教学①概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理.②归纳练习:(i)由铜、铁、铝、金、银能导电,能归纳出什么结论?(ii)由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论?(iii)观察等式:,能得出怎样的结论?③讨论:(i)统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理?(ii)归纳推理有何作用?(发现新事实,获得新结论,是做出科学发现的重要手段)(iii)归纳

5、推理的结果是否正确?(不一定)三、例题讲解例1:已知数列的第1项,且,试归纳出通项公式.(分析思路:试值n=1,2,3,4→猜想→如何证明:将递推公式变形,再构造新数列)思考:证得某命题在n=n时成立;又假设在n=k时命题成立,再证明n=k+1时命题也成立.由这两步,可以归纳出什么结论?(目的:渗透数学归纳法原理,即基础、递推关系)板书分析过程,提问a2,a3,a4等几项的计算结果设问:能直接解出an吗?四、课堂训练1、已知,推测的表达式.2、三角形的内角和是1800,凸四边形的内角和是3600,凸五边形的内角和是5400,……由这些结论猜想凸n边形的内角和公式。解析:凸

6、n边形的内角和公式是(n-2)×1800.根据学生基础情况,决定是当堂引导学生证明结论或者是课外完成。67高中数学选修2-2教案3、由归纳猜想出一个一般结论。解析:猜想:(a,b,m均为正实数)。五、小结1.归纳推理的几个特点1)归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.2)归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.3)归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.注:归纳是立足于观察、经验、实验和对有限资料分析的基础上.提出带有规律性的结论2.归纳推理的一般步骤:1)对已有的资料

7、进行观察、分析、归纳、整理;2)猜想3)检验1)规律性2)探索性3)观察、试验的不确定性指出对归纳推理的结果进行检验是必要的归纳推理【练习与测试】:(基础题)1)数列…中的等于()A.B.C.D.2)从中得出的一般性结论是_____________。3)定义的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果可能是().(1)(2)(3)(4)(A)(B)A.B.C.D.4)有10个顶点的凸多面体,它的各面多边形内角总和是________.5)在一次珠宝展览会上,某商家展出一套珠宝首

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭