苹果公司发布首份人工智能报告,AI 视觉是研究新方向

苹果公司发布首份人工智能报告,AI 视觉是研究新方向

ID:8134559

大小:1.74 MB

页数:37页

时间:2018-03-06

苹果公司发布首份人工智能报告,AI 视觉是研究新方向_第1页
苹果公司发布首份人工智能报告,AI 视觉是研究新方向_第2页
苹果公司发布首份人工智能报告,AI 视觉是研究新方向_第3页
苹果公司发布首份人工智能报告,AI 视觉是研究新方向_第4页
苹果公司发布首份人工智能报告,AI 视觉是研究新方向_第5页
资源描述:

《苹果公司发布首份人工智能报告,AI 视觉是研究新方向》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、苹果公司发布首份人工智能报告,AI视觉是研究新方向摘要随着图形技术不断进步,利用合成图像训练机器学习模型变得越来越容易,这可以帮助避免注释图像的昂贵支出。然而,通过合成图像训练机器学习模型可能无法达到令人满意的效果,因为合成图像与真实图像之间毕竟存在区别。为了减少这种差异,苹果公司提出“模拟+无监督”学习方法,即通过计算机生成图像或合成图像来训练算法的图像识别能力。事实上,这种“模拟+无监督”学习需要将无标注的真实图像数据与已经注释的合成图像相结合。在很大程度上,它需要依赖生成式对抗网络(GAN)的新机器学习技术,它可通过两个神经网络相互对

2、抗以生成更加真实的图像。苹果公司对标准GAN算法进行了多处关键性修改,以保留注释、避免伪影以及稳定性训练:自正则化(self-regularization)-局部对抗性损失-使用精炼图像升级鉴别器。苹果公司发现,这个过程可以产生高度逼真的图像,在质量上和用户研究方面都已经获得证实。苹果公司已经通过训练模型评估视线水平和手势姿态,对计算机生成图像进行定量评估。通过使用合成图像,苹果公司的图像识别算法已经取得了巨大进步。在没有使用任何标准真实数据的情况下,苹果公司在MPIIGaze数据集中获得了最高水平的结果。引言随着最近高容量深度神经学习网络

3、的崛起,大规模标注训练数据集正变得日益重要。可是,标准数量庞大的数据集成本非常高,而且相当耗费时间。为此,使用合成图像而非真实图像训练算法的想法开始出现,因为注释已经可实现自动化。利用XBOX360外设Kinect评估人体姿势以及其他任务,都是使用合成数据完成的。(图1:“模拟+无监督”学习:通过计算机生成图像或合成图像来训练算法的图像识别能力)然而,由于合成图像与真实图像之间存在差距,使用合成图像训练算法可能产生很多问题。因为合成图像通常不够真实,导致神经网络学习仅仅能够了解到合成图像中的细节,并不能完整地识别出真实图像,进而也无法为算法

4、提供精确的学习。一种解决方案就是改进模拟器,可是增加真实性的计算往往非常昂贵,渲染器的设计也更加困难。此外,即使最顶级的渲染器可能也无法模仿真实图像中的所有特征。因此,缺少真实性可能导致算法过度拟合合成图像中不真实的细节。在这篇论文中,苹果公司提出“模拟+无监督”学习的方法,其目的就是使用未标注真实数据的模拟器提高合成图像的真实性。提高真实性可更好地帮助训练机器学习模型,而且无需收集任何数据,也无需人类继续标注图像。除了增加真实性,“模拟+无监督”学习还应该保留注释信息以用于训练机器学习模型,比如图一中的注视方向应被保留下来。此外,由于机器

5、学习模型对合成数据中的伪影非常敏感,“模拟+无监督”学习也应该产生没有伪影的图像。苹果公司为“模拟+无监督”学习开发出新的方法,称之为SimGAN,它可以利用称之为“精炼器网络(refinernetwork)”的神经网络从模拟器中提炼合成图像。图二中展示了这种方法的概述:第一,黑盒子模拟器中生成合成图像,然后利用“精炼器网络”对其进行提炼。为了增加真实性,也就是“模拟+无监督”学习算法的首要需求,我们需要利用类似生成式对抗网络(GAN)来训练“精炼器网络”,进而产生判别网络无法区分真假的精炼图像。第二,为了保留合成图像上的注释信息,苹果公司

6、需要利用“自正则化损失”弥补对抗性损失,在合成图像和精炼图像之间进行修改。此外,我们还利用完全卷积神经网络,在像素水平方面进行操作,并保留全局结构,而非整体修改图像的内容。第三,GAN框架要求训练2个神经网络进行对抗,它们的目标往往不够稳定,倾向于产生伪影。为了避免漂移和产生更强的伪影,导致甄别更困难,我们需要限定鉴别器的接收区域为局部接收,而非整张图片接收,这导致每张图像都会产生多个局部对抗性损失。此外,苹果公司还引入提高训练稳定性的方法,即通过使用精炼图像而非当前“精炼器网络”中的现有图像升级鉴别器。1.1相关工作GAN框架需要2个神经

7、网络竞争损失,即生成器与鉴别器。其中,生成器网络的目标是在真实图像上绘制随机向量,而鉴别器网络的目标则是区分生成图像与真实图像。GAN网络是由古德弗罗(I.Goodfellow)等人首先引入的,它可以帮助生成逼真的视觉图像。自从那以来,GAN已经有了许多改进,并被投入到有趣的应用中。(图2:SimGAN概观:我们利用“精炼器网络”提炼模拟器产生的输出图像,并最大限度地减少局部对抗性损失,并进行自正则化。对抗性损失可以欺骗鉴别器网络,从而令其将合成图像误认为真实图像。而自正则化则会最大限度减少合成图像与真实图像的差异,包括保留注释信息,并让精

8、炼图像被用于训练机器学习模型。“精炼器网络”与鉴别器网络也会交替升级。)王(X.Wang)与古普塔(A.Gupta)利用结构化GAN学习表面法线,然后将其与StyleGAN相结合

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。