简单的线性规划问题教学反思

简单的线性规划问题教学反思

ID:8131510

大小:41.41 KB

页数:6页

时间:2018-03-06

简单的线性规划问题教学反思_第1页
简单的线性规划问题教学反思_第2页
简单的线性规划问题教学反思_第3页
简单的线性规划问题教学反思_第4页
简单的线性规划问题教学反思_第5页
资源描述:

《简单的线性规划问题教学反思》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、简单的线性规划问题教学反思本节课是学生对线性规划问题的图解法的复习,由于学生对代数问题等价转化为几何问题需要一个过程,因此在对教材的处理上有一定的难度.但是,通过前面的复习,学生已经理解:1、有序实数对与平面直角坐标系中的点是一一对应的,因此二元一次方程的解与直线上点的坐标之间是一一对应的;2、以二元一次不等式的解为坐标的点都在平面直线的某一侧。而且,学生也已经掌握了用直线定界,用特殊点定域的方法画出平面区域。同时,由于在必修二中对直线方程的系统学习,学生也已经明确了Ax+B+C=0中A、B、C所表示的意义,有了将二元一次方程和二元一

2、次不等式转化为直线和平面区域的意识。鉴于以上几点,在本节课中,除了要完成教育教学知识点的讲授外,在学生的能力和情感方面,我也设定了以下几个目标:1、在应用图解法解题的过程中培养学生的观察能力、理解能力;在例题讲解过程中,培养学生的分析问题、解决问题的能力和探索能力。2、让学生体验数学活动中充满着探索与创造,培养学生勤于思考、勇于探索的精神。同时,学会用运动的观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辩证关系。第6页针对我所教的两个班(一个实验班,一个平行班)学生所具备的数学基础知识和分析问题、解决问题的能力不同,本节课我对

3、实验班的教学方法是以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法。而对平行班的学生,主要是教师引导,教师与学生双主体式的教学方式。在此,就实验班的教学设计作出如下说明:1、构建问题情境,激发学生解决问题的欲望。2、提供观察、探索、探讨的机会,引导学生独立思考,有效的调动学生的思维,使学生在开放的活动中获取知识。3、利用多媒体辅助教学,直观生动地呈现图解法求最优解的过程,既加大课堂信息量,又提高教学效率。4、指导学生做到四会:会疑、会议、会思、会变。在教学过程中,重视学生的探索经历和发现新知的体验,使学生形成自己对数学

4、知识的理解和有效的学习策略。一节好课不但要有充分的准备、好的设计、正确的教学理念,同时教师的综合素质显得尤为重要。教学中不但要体现教师的主导作用,更应发挥学生的主体作用。在本节课的教学之前,我主要针对以下几个问题展开深入的思考:1、课堂气氛度的把握?2、如何控制学生课堂讨论的范围?3、对优等生和后进生如何合理分组?分组后后进生的积极性又如何有效调动?4、情境设置与问题引导怎样才能与教学实际有效结合,使得教学过程能够大体按照课前设置的去运行,使得教学效果尽量达到最优化?5、课后练习和书面作业的布置难度的把握?第6页本节课在精心的准备下取

5、得了良好的教学效果,学生的达成度也很高。这节课的成功教学使我深深的明白,作为一名教师,尤其是青年教师,我们一定要在深入研究教材的基础上,花更多的时间去研究我们的学生,挖掘他们的潜力,使他们的优点得以展示,以此来激励他们更加努力的学习。反思二:简单的线性规划问题教学反思早上第一节听了备课组叶老师一节《二元一次不等式及平面区域》公开课。叶老师通过数轴来表示一元一次不等式,以学生熟悉的内容引入,调动学生的学习兴趣,学生马上投入到新课的学习。接着通过画出二元一次方程x--6=0表示的直线方程,所有点把平面上分成三部分,在线上的,在x--60这

6、区域内的,在x--60区域内的。然后叶老师通过方法1:取点代入法定区域,方法2:由不等号定区域这两种方法突破本节课的重点:用二元一次不等式(组)表示平面区域。最后,由例题教导学生解题的步骤,再就是让学生多练。本节课的亮点有:1、教学基本功扎实,教态自然,板书规范。2、备课充分,教学设计适合学生的实际情况,教学思路清晰,讲解有条不紊。3、讲练结合,及时训练,注意知识的巩固和落实。建议:1、找点的时候是否可以让个别学生说出几个点,相信这样学生理解更好点。第6页2、在解答例1时,表述画图时是否可以直接写成:作直线x--4=0(画成虚线)第二

7、节由我上了一节《简单的线性规划问题》公开课。本节课我的教学设计是通过上节课的二元一次不等式在平面直角坐标系表示成平面区域来引入,由学生板演检测学生掌握程度。在学生完成板演后,提出本节的问题:求z=2x+的最大值,使式中的x,满足不等式组(I),求z=2x+的最大值,式中的x,只能取平面区域内值,所以,只需要由z=2x+变形为=-2x+z就可以把不熟悉的求解转化为一个高一曾学习过的内容:=-2x+z就是直线方程的斜截式,让学生画出=-2x,=-2x+1,=-2x+2,三条学生,观察可以知道这是一系平行线,问题转化为求z=2x+的最大值其

8、实就是求直线=-2x+z过平面区域某一点时在轴上截距最大值。我先画出直线=-2x,通过平移可以发现直线=-2x+z过平面区域过某一点时在轴上截距最大。求出最大值,问题得到解决。解答完成后,接着让学生阅读教材88页,从中找

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。