analysis, geometry, and modeling in finance advanced methods in option pricing(2-2)

analysis, geometry, and modeling in finance advanced methods in option pricing(2-2)

ID:8084212

大小:1.67 MB

页数:197页

时间:2018-03-05

analysis, geometry, and modeling in finance advanced methods in option pricing(2-2)_第1页
analysis, geometry, and modeling in finance advanced methods in option pricing(2-2)_第2页
analysis, geometry, and modeling in finance advanced methods in option pricing(2-2)_第3页
analysis, geometry, and modeling in finance advanced methods in option pricing(2-2)_第4页
analysis, geometry, and modeling in finance advanced methods in option pricing(2-2)_第5页
资源描述:

《analysis, geometry, and modeling in finance advanced methods in option pricing(2-2)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Chapter7Multi-AssetEuropeanOptionandFlatGeometryAbstractAstandardmethodtopriceamulti-assetEuropeanoptionin-corporatinganimpliedvolatilityistousealocalvolatilityMonte-Carlocom-putation.Althoughstraightforward,thismethodisquitetime-consuming,particularlywhenthenumberofassets

2、islargeandweevaluatetheGreeks.Applyingourgeometricalframeworktothismulti-dimensionalproblem,weexplainhowtoobtainaccurateapproximationsofmulti-assetEuropeanop-tions.WeusetheheatkernelexpansiontoobtainanasymptoticsolutiontotheKolmogorovequationforan-dimensionallocalvolatilit

3、ymodel.Theresultingmanifoldisthe atEuclideanspaceRn.Wepresenttwoapplications.The rstapplicationwelookatisthederivationofanasymptoticimpliedvolatilityforabasketoption.Inparticular,wetrytoreconstructthebasketimpliedvolatilityfromtheimpliedvolatilityofeachasset.Inthesecondapp

4、lication,weobtainaccurateapproximationforCollateralizedCommodityObligations(CCO),whicharerecentcommodityderivativesthatmimictheCollateralizedDebtObligations(CDO).7.1Localvolatilitymodelsand atgeometryIntheforwardmeasurePT,eachforwardfi(i=1;;n)isalocalmartingaletandweass

5、umethattheyfollowalocalvolatilitymodeldfi=Ci(t;fi)dW;dWdW=dt(7.1)ttiijijwithadeterministicrateandwiththeinitialconditionfi=fi.Themetrict=00(4.78)att=0underlyingthismodelisdfidfjds2=2ij(7.2)Ci(fi)Cj(fi)187188Analysis,Geometry,andModelinginFinancewherewehavesetCi(fi)Ci(0;

6、fi).ByusingtheCholeskydecomposition,wewritetheinverseofthecorrelationmatrixas1=LyLorincomponentsij=LLkikjByconventionijdenotesthecomponentsoftheinverseofthecorrelationmatrix.[L]ikisann-matrix.Similarlythecorrelationcanbewrittenasy=L1L1orincomponents=LikLjkijHer

7、eLijarethecomponentsoftheinverseoftheCholeskymatrixL.IfweintroducethenewcoordinatesZfjdxjui(f)=L(7.3)ijjjfjC(x)0weobtainthatthemetric(7.2)(att=0)is at(thefactor2isintroducedforaconveniencepurpose)ds2=2duiduiThegeodesicdistancebetweenthetwopointsfffigandfffigis00iithengiv

8、enbytheEuclideandistanceXnd(u)2=2u:u2(ui)2(7.4)i=1Aftersomealgebraicmanipulations,thecon

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。