欢迎来到天天文库
浏览记录
ID:8084212
大小:1.67 MB
页数:197页
时间:2018-03-05
《analysis, geometry, and modeling in finance advanced methods in option pricing(2-2)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Chapter7Multi-AssetEuropeanOptionandFlatGeometryAbstractAstandardmethodtopriceamulti-assetEuropeanoptionin-corporatinganimpliedvolatilityistousealocalvolatilityMonte-Carlocom-putation.Althoughstraightforward,thismethodisquitetime-consuming,particularlywhenthenumberofassets
2、islargeandweevaluatetheGreeks.Applyingourgeometricalframeworktothismulti-dimensionalproblem,weexplainhowtoobtainaccurateapproximationsofmulti-assetEuropeanop-tions.WeusetheheatkernelexpansiontoobtainanasymptoticsolutiontotheKolmogorovequationforan-dimensionallocalvolatilit
3、ymodel.Theresultingmanifoldisthe atEuclideanspaceRn.Wepresenttwoapplications.Therstapplicationwelookatisthederivationofanasymptoticimpliedvolatilityforabasketoption.Inparticular,wetrytoreconstructthebasketimpliedvolatilityfromtheimpliedvolatilityofeachasset.Inthesecondapp
4、lication,weobtainaccurateapproximationforCollateralizedCommodityObligations(CCO),whicharerecentcommodityderivativesthatmimictheCollateralizedDebtObligations(CDO).7.1Localvolatilitymodelsand atgeometryIntheforwardmeasurePT,eachforwardfi(i=1;;n)isalocalmartingaletandweass
5、umethattheyfollowalocalvolatilitymodeldfi=Ci(t;fi)dW;dWdW=dt(7.1)ttiijijwithadeterministicrateandwiththeinitialconditionfi=fi.Themetrict=00(4.78)att=0underlyingthismodelisdfidfjds2=2ij(7.2)Ci(fi)Cj(fi)187188Analysis,Geometry,andModelinginFinancewherewehavesetCi(fi)Ci(0;
6、fi).ByusingtheCholeskydecomposition,wewritetheinverseofthecorrelationmatrixas 1=LyLorincomponentsij=LLkikjByconventionijdenotesthecomponentsoftheinverseofthecorrelationmatrix.[L]ikisann-matrix.Similarlythecorrelationcanbewrittenas y=L 1L 1orincomponents=LikLjkijHer
7、eLijarethecomponentsoftheinverseoftheCholeskymatrixL.IfweintroducethenewcoordinatesZfjdxjui(f)=L(7.3)ijjjfjC(x)0weobtainthatthemetric(7.2)(att=0)is at(thefactor2isintroducedforaconveniencepurpose)ds2=2duiduiThegeodesicdistancebetweenthetwopointsfffigandfffigis00iithengiv
8、enbytheEuclideandistanceXnd(u)2=2u:u2(ui)2(7.4)i=1Aftersomealgebraicmanipulations,thecon
此文档下载收益归作者所有