Analysis, Geometry, and Modeling in Finance 13

Analysis, Geometry, and Modeling in Finance 13

ID:41345912

大小:486.74 KB

页数:12页

时间:2019-08-22

Analysis, Geometry, and Modeling in Finance 13_第1页
Analysis, Geometry, and Modeling in Finance 13_第2页
Analysis, Geometry, and Modeling in Finance 13_第3页
Analysis, Geometry, and Modeling in Finance 13_第4页
Analysis, Geometry, and Modeling in Finance 13_第5页
资源描述:

《Analysis, Geometry, and Modeling in Finance 13》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Chapter12PortfolioOptimizationandBellman-Hamilton-JacobiEquationAbstractPricingandHedgingderivativesproductsisessentiallyaproblemofportfoliooptimization.Onceameasureofriskhasbeenchosen,thepricecanbede nedasthemeanvalueofthepro tandloss(P&L)andthebesthedgingstrategyistheoptimal

2、controlwhichminimizestherisk.IntheBlack-Scholesmodel,theonlysourceofriskisthespotprocessandtheoptimalcontrolisthedelta-strategywhichcancelstherisk.However,undertheintroductionofstochasticvolatility,themarketmodelbecomesincomplete.Theresultingriskis niteandthedelta-strategyisno

3、toptimal.Aportfoliooptimizationproblemappearsalsonaturallyifweassumethatthemarketisilliquidandthetradingstrategya ectsthepricemovements.Inthefollowing,wewillfocusontheseoptimalcontrolproblemswhenthemarketisincompleteandthemarketisilliquid.Ourstudyinvolvestheuseofperturbationme

4、thodsfornon-linearPDEs.12.1IntroductionSincethefamouspapersofBlack-Scholesonoptionpricing[65],someprogresshasbeenmadeinordertoextendtheseresultstomorerealisticarbitrage-freemarketmodels.Asareminder,theBlack-Scholestheoryconsistsinfollowinga(hedging)strategytodecreasetheriskofl

5、ossgivena xedamountofreturn.Thistheoryisbasedonthreeimportanthypotheseswhicharenotsatis edunderrealmarketconditions:Thetraderscanrevisetheirdecisionscontinuouslyintime.This rsthypothesisisnotrealisticforobviousreasons.Amajorimprovementwasrecentlyintroducedin[6]intheirtime-dis

6、cretemodel.Theyintroduceanelementarytimeafterwhichatraderisabletorevisehisdecisionsagain.Theoptimalstrategyis xedbytheminimizationoftheriskde nedbythevarianceoftheportfolio.Theresultingriskisnolongerzeroandinthecontinuous-timelimitwheregoestozero,onerecoverstheclassicalresul

7、tofBlack-Scholes:theriskvanishes.339©2009byTaylor&FrancisGroup,LLC340Analysis,Geometry,andModelinginFinanceThespotdynamicsisalog-normalprocess(withaconstantvolatility).Asaconsequence,themarketiscompleteandtheriskcancels.Thissecondhypothesisdoesn'ttruthfullyre ectthemarketasin

8、dicatedbytheexistenceofanimpliedvolatility.Inchapters5and6,we

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。