高中必修1-5错误解题分析系列-《10.2导数应用》

高中必修1-5错误解题分析系列-《10.2导数应用》

ID:7864444

大小:548.00 KB

页数:6页

时间:2018-03-01

高中必修1-5错误解题分析系列-《10.2导数应用》_第1页
高中必修1-5错误解题分析系列-《10.2导数应用》_第2页
高中必修1-5错误解题分析系列-《10.2导数应用》_第3页
高中必修1-5错误解题分析系列-《10.2导数应用》_第4页
高中必修1-5错误解题分析系列-《10.2导数应用》_第5页
资源描述:

《高中必修1-5错误解题分析系列-《10.2导数应用》》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、§10.2导数的应用一、知识导学1.可导函数的极值(1)极值的概念设函数在点附近有定义,且若对附近的所有的点都有(或),则称为函数的一个极大(小)值,称为极大(小)值点.(2)求可导函数极值的步骤:①求导数。求方程的根.②求方程的根.③检验在方程的根的左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数在这个根处取得极大值;如果在根的右侧附近为正,左侧附近为负,那么函数在这个根处取得极小值.2.函数的最大值和最小值(1)设是定义在区间上的函数,在内有导数,求函数在上的最大值与最小值,可分两步进行.①求在内的极

2、值.②将在各极值点的极值与、比较,其中最大的一个为最大值,最小的一个为最小值.(2)若函数在上单调增加,则为函数的最小值,为函数的最大值;若函数在上单调递减,则为函数的最大值,为函数的最小值.二、疑难知识导析1.在求可导函数的极值时,应注意:(以下将导函数取值为0的点称为函数的驻点可导函数的极值点一定是它的驻点,注意一定要是可导函数。例如函数在点处有极小值=0,可是这里的根本不存在,所以点不是的驻点.(1)可导函数的驻点可能是它的极值点,也可能不是极值点。例如函数的导数,在点处有,即点是的驻点,但从在上为增函数可知

3、,点不是的极值点.(2)求一个可导函数的极值时,常常把驻点附近的函数值的讨论情况列成表格,这样可使函数在各单调区间的增减情况一目了然.(3)在求实际问题中的最大值和最小值时,一般是先找出自变量、因变量,建立函数关系式,并确定其定义域.如果定义域是一个开区间,函数在定义域内可导(其实只要是初等函数,它在自己的定义域内必然可导),并且按常理分析,此函数在这一开区间内应该有最大(小)值(如果定义域是闭区间,那么只要函数在此闭区间上连续,它就一定有最大(小).记住这个定理很有好处),然后通过对函数求导,发现定义域内只有一个

4、驻点,那么立即可以断定在这个驻点处的函数值就是最大(小)值。知道这一点是非常重要的,因为它在应用上较为简便,省去了讨论驻点是否为极值点,求函数在端点处的值,以及同函数在极值点处的值进行比较等步骤.2.极大(小)值与最大(小)值的区别与联系极值是局部性概念,最大(小)值可以看作整体性概念,因而在一般情况下,两者是有区别的.极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值,但如果连续函数在区间内只有一个极值,那么极大值就是最大值,极小值就是最小值.三、经典例题导讲[例1]已知曲线及点,求过点的曲线的

5、切线方程.错解:,过点的切线斜率,过点的曲线的切线方程为.错因:曲线在某点处的切线斜率是该曲线对应的函数在该点处的导数值,这是导数的几何意义.在此题中,点凑巧在曲线上,求过点的切线方程,却并非说切点就是点,上述解法对求过点的切线方程和求曲线在点处的切线方程,认识不到位,发生了混淆.正解:设过点的切线与曲线切于点,则过点的曲线的切线斜率,又,。①点在曲线上,②,②代入①得化简,得,或.若,则,过点的切线方程为;若,则,过点的切线方程为过点的曲线的切线方程为或[例2]已知函数在上是减函数,求的取值范围.错解:在上是减函

6、数,在上恒成立,对一切恒成立,,即,.正解:,在上是减函数,在上恒成立,且,即且,.[例3]当,证明不等式.证明:,,则,当时。在内是增函数,,即,又,当时,,在内是减函数,,即,因此,当时,不等式成立.点评:由题意构造出两个函数,.利用导数求函数的单调区间,从而导出及是解决本题的关键.[例4]设工厂到铁路线的垂直距离为20km,垂足为B.铁路线上距离B为100km处有一原料供应站C,现要在铁路BC之间某处D修建一个原料中转车站,再由车站D向工厂修一条公路.如果已知每千米的铁路运费与公路运费之比为3:5,那么,D应

7、选在何处,才能使原料供应站C运货到工厂A所需运费最省?解:设BD之间的距离为km,则

8、AD

9、=,

10、CD

11、=.如果公路运费为元/km,那么铁路运费为元/km.故从原料供应站C途经中转站D到工厂A所需总运费为:+,().对该式求导,得=+=,令,即得25=9(),解之得=15,=-15(不符合实际意义,舍去).且=15是函数在定义域内的唯一驻点,所以=15是函数的极小值点,而且也是函数的最小值点.由此可知,车站D建于B,C之间并且与B相距15km处时,运费最省.点评:这是一道实际生活中的优化问题,建立的目标函数是一个复

12、合函数,用过去的知识求其最值往往没有一般方法,即使能求出,也要涉及到较高的技能技巧.而运用导数知识,求复合函数的最值就变得非常简单.一般情况下,对于实际生活中的优化问题,如果其目标函数为高次多项式函数、简单的分式函数简单的无理函数、简单的指数、对数函数,或它们的复合函数,均可用导数法求其最值.由此也可见,导数的引入,大大拓宽了中学数学知识在实际优化问题中的应

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。