资源描述:
《the box jenkins program a case study》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、ChapterTheBox–JenkinsProgram:ACaseStudy7ThischapterdealswiththepracticalapplicationoftheBox{JenkinsProgramtotheDonauwoerthData,consistingof7300dischargemea-surementsfromtheDonauriveratDonauwoerth,speciedincubiccentimeterpersecondandtakenonbehalfoftheB
2、avarianStateOf-ceForEnvironmentbetweenJanuary1st,1985andDecember31st,2004.Forthepurposeofstudying,thedatahavebeenkindlymadeavailabletotheUniversityofW•urzburg.AsintroducedinSection2.3,theBox{JenkinsmethodologycanbeappliedtospecifyadequateARMA(p;q)-mod
3、elYt=a1Yt 1++apYt p+"t+b1"t 1++bq"t q;t2ZfortheDonauwoerthdatainordertoforecastfuturevaluesofthetimeseries.Inshort,theoriginaltimeserieswillbeadjustedtorepresentapossiblerealizationofsuchamodel.BasedontheidenticationmethodsMINIC,SCANandESACF,app
4、ropriatepairsoforders(p;q)arechoseninSection7.5andthecorrespondingmodelcoecientsa1;:::;apandb1;:::;bqaredetermined.Finally,itisdemonstratedbyDiagnosticCheckinginSection7.6thattheresultingmodelisadequateandforecastsbasedonthismodelareexecutedintheconcl
5、udingSection7.7.Yet,beforestartingtheprograminSection7.4,sometheoreticalpreparationshavetobecarriedout.IntherstSection7.1weintro-ducethegeneraldenitionofthepartialautocorrelationleadingtotheLevinson{Durbin-Algorithm,whichwillbeneededforDiagnosticChec
6、king.InordertoverifywhetherpureAR(p)-orMA(q)-modelsmightbeappropriatecandidatesforexplainingthesample,wede-riveinSection7.2and7.3asymptoticnormalbehaviorsofsuitableestimatorsofthepartialandgeneralautocorrelations.224TheBox–JenkinsProgram:ACaseStudy7.1P
7、artialCorrelationandLevinson–DurbinRecursionIngeneral,thecorrelationbetweentworandomvariablesisoftenduetothefactthatbothvariablesarecorrelatedwithothervariables.Therefore,thelinearin
uenceofthesevariablesisremovedtoreceivethepartialcorrelation.PartialC
8、orrelationThepartialcorrelationoftwosquareintegrable,realvaluedrandomvariablesXandY,holdingtherandomvariablesZ1;:::;Zm;m2N,xed,isdenedasCorr(X X^Z1;:::;Zm;Y Y^Z1;:::;Zm)Cov(X X^Z1;:::;Zm;Y Y^Z1;:::;Zm)=;(Var(X X^Z;:::;Z))1=2(Var(Y Y^Z