the r book multivariate statistics

the r book multivariate statistics

ID:7304603

大小:240.47 KB

页数:17页

时间:2018-02-11

the r book multivariate statistics_第1页
the r book multivariate statistics_第2页
the r book multivariate statistics_第3页
the r book multivariate statistics_第4页
the r book multivariate statistics_第5页
资源描述:

《the r book multivariate statistics》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、23TreeModelsTreemodelsarecomputationallyintensivemethodsthatareusedinsituationswheretherearemanyexplana-toryvariablesandwewouldlikeguidanceaboutwhichofthemtoincludeinthemodel.Oftentherearesomanyexplanatoryvariablesthatwesimplycouldnottestthemall,evenifw

2、ewantedtoinvestthehugeamountoftimethatwouldbenecessarytocompletesuchacomplicatedmultipleregressionexercise.Treemodelsareparticularlygoodattasksthatmightinthepasthavebeenregardedastherealmofmultivariatestatistics(e.g.classificationproblems).Thegreatvirtue

3、softreemodelsareasfollows:Theyareverysimple.Theyareexcellentforinitialdatainspection.Theygiveaveryclearpictureofthestructureofthedata.Theyprovideahighlyintuitiveinsightintothekindsofinteractionsbetweenvariables.Itisbesttobeginbylookingatatreemodelin

4、action,beforethinkingabouthowitworks.Hereisanairpollutionexamplethatwemightwanttoanalyzeasamultipleregression.Webeginbyusingtree,thenillustratethemoremodernfunctionrpart(whichstandsfor‘recursivepartitioning’)install.packages("tree")library(tree)Pollute<

5、-read.table("c:\temp\Pollute.txt",header=T)attach(Pollute)names(Pollute)[1]"Pollution""Temp""Industry""Population""Wind"[6]"Rain""Wet.days"model<-tree(Pollute)plot(model)text(model)TheRBook,SecondEdition.MichaelJ.Crawley.©2013JohnWiley&Sons,Ltd.Publis

6、hed2013byJohnWiley&Sons,Ltd.TREEMODELS769Industry<748Population<19067.00Wet.days<10843.43Temp<59.3512.00Wind<9.6515.0033.8823.00Youfollowapathfromthetopofthetree(called,indefianceofgravity,theroot)andproceedtooneoftheterminalnodes(calledaleaf)byfollowing

7、asuccessionofrules(calledsplits).Thenumbersatthetipsoftheleavesarethemeanvaluesinthatsubsetofthedata(meanSO2concentrationinthiscase).Thedetailsareexplainedbelow.23.1BackgroundThemodelisfittedusingbinaryrecursivepartitioning,wherebythedataaresuccessivelys

8、plitalongcoordinateaxesoftheexplanatoryvariablessothat,atanynode,thesplitwhichmaximallydistinguishestheresponsevariableintheleftandtherightbranchesisselected.Splittingcontinuesuntilnodesarepureorthedataaretoosparse(fewerthansixca

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。