introducing differential evolution-introduction to cuda programming in finance

introducing differential evolution-introduction to cuda programming in finance

ID:7288809

大小:376.42 KB

页数:27页

时间:2018-02-10

introducing differential evolution-introduction to cuda programming in finance_第1页
introducing differential evolution-introduction to cuda programming in finance_第2页
introducing differential evolution-introduction to cuda programming in finance_第3页
introducing differential evolution-introduction to cuda programming in finance_第4页
introducing differential evolution-introduction to cuda programming in finance_第5页
资源描述:

《introducing differential evolution-introduction to cuda programming in finance》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Chapter14IntroducingDifferentialEvolution14.1IntroductionWhilealmostanyproblemfoundineverydaylifecanbethoughtasanoptimisationproblem,wesawthatinclassicaleconomicstheagentdecisionmakingprocesswasrepresentedasthemaximisationofsomeexpectedutilityfunc-tions.Assumingrandomness,portfolioselectio

2、nandfairpricewereintroduced,suchasCAPMandBSformula,andquantitativeoptimisationtechniquescouldbeused.Further,econometricmodelsweredevisedtoforecastpriceprocessesinviewofeithercomputingtheCAPM/BSformula,or,takingadvantageofmarketinefficiencies.Intheformer,simplicityledtoasingleoptimalsolution

3、,whileinthelatter,complexityledtoarangeoffairvalues.Withthegrowingquantityofdataavailable,machinelearningmethodsthathavebeensuccessfullyappliedinsciencearenowappliedtominingthemarkets.Dataminingandmorerecentmachine-learningmethodologiesprovidearangeofgeneraltechniquesfortheclassification,pr

4、ediction,andoptimisationofstructuredandunstructureddata.Allofthesemethodsrequiretheuseofquantitativeoptimisationtechniquesknownasstochasticoptimisationalgorithms,suchascombinatorialoptimisation,simulatedannealing(SA),geneticalgorithms(GA),orreinforcedlearning.Whilestochasticmethodshavesome

5、degreeofrandomnesswhenoperating,heuristicmethodsincorporateadditionalstrate-giesorknowledgetotheiroperation.Someofthesealgorithmsuseheuristicsinspiredbyreallifeprocesses.Forinstance,geneticalgorithmsareinspiredbytheprocessofevolution,andsimulatedannealingisinspiredbythepro-cessofannealingm

6、etals.WearegoingtoconsideranEvolutionaryAlgorithm(EA)whichwewillillustratewiththeproblemofmodelcalibrationtoafinitesetofoptionprices.14.2Calibrationtoimpliedvolatility14.2.1Introducingcalibration14.2.1.1ThegeneralideaForeveryparametricmodelthatonecandefine,suchasregressionmodelsoroptionprici

7、ngmodels,weneedtoestimatethemodelparametersfromthemarketpricesortheimpliedvolatilitysurface.Itleadstoanill-posedinverseproblembecausetheinversionisnotstableandamplifiesmarketdataerrorsinthesolution.Tobemoreprecise,lettingxbethevectorofmodelparametersandybetheve

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。