risk measures and stochastic orders using integrals of distorted quantile functions

risk measures and stochastic orders using integrals of distorted quantile functions

ID:7286618

大小:166.75 KB

页数:9页

时间:2018-02-10

risk measures and stochastic orders using integrals of distorted quantile functions_第1页
risk measures and stochastic orders using integrals of distorted quantile functions_第2页
risk measures and stochastic orders using integrals of distorted quantile functions_第3页
risk measures and stochastic orders using integrals of distorted quantile functions_第4页
risk measures and stochastic orders using integrals of distorted quantile functions_第5页
资源描述:

《risk measures and stochastic orders using integrals of distorted quantile functions》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、RiskMeasuresandStochasticOrdersUsingIntegralsofDistortedQuantileFunctionsMiguelMendesandIgnacioCascosAbstractWeconstructnewriskfunctionalsandstochasticorderingsbasedonintegralsusingdiscontinuousdistortionfunctions.Weprovearesultonthesubadditivityoftheriskfunctio

2、nal.Astothestochasticorderwegiveacharacterizationofthisorderwhichallowsustoconstructspectralriskmeasuresthatareconsistentwiththatorder.1IntroductionInthischapterwecallintegralofdistortedquantilefunctiontoallintegralsoftheformtqX(ϕ(s))ds(1)0whereqXisthepseudo-in

3、verse(commonlyknownasquantilefunction)ofthedistributionfunctionFX(x):=P(X≤x)foragivenprobabilitymeasurePonameasurespace(Ω,F)andϕ:[0,1]→[0,1]isanon-decreasingfunctionsatisfyingϕ(0)=0andϕ(1)=1.Thisfunctionisinterpretedasapseudo-inverseofagivendistortionfunctionψ:[

4、0,1]→[0,1]whichgeneratesadistortedprobabilityP∗:=ψ◦P.Thedistortionfunctionwillbeassumedtopossessdiscontinuitiesandtothebestofourknowledgethishadnotbeenconsideredpreviously.M.Mendes()FEUPandCMUP,UniversidadedoPorto,Portugale-mail:mmendes@fc.up.ptI.CascosDepartme

5、ntofStatistics,UniversidadCarlosIIIdeMadrid,Spaine-mail:ignacio.cascos@uc3m.esP.E.Oliveiraetal.(eds.),RecentDevelopmentsinModelingandApplications261inStatistics,StudiesinTheoreticalandAppliedStatistics,DOI10.1007/978-3-642-32419-226,©Springer-VerlagBerlinHeidelb

6、erg2013262M.MendesandI.CascosIntegralsofthisformappearnaturallyinthefollowingclassicalconstruction.LetX1,...,Xnbei.i.d.randomvariables.ItcanbeeasilyseenthattheexpectationofX1:n:=min{X1,...,Xn}canbewrittenas11/nE(X1:n)=qX1−(1−s)ds01/nnwhereϕ(s):=1−(1−s)isthein

7、versefunctionofψ(u):=1−(1−u)andψissuchthatP(X1:n≤x)=ψ(P(X≤x))forallx∈R.Itsrelationwithriskmeasuresisalsostraightforward.IfoneseesXasarandomvariablerepresentingthenetworthafterdiscountingofacertainportfolioandinterpretsX1:nasaworstcasescenarioovernsimulations,the

8、riskofX1:ncalculatedbymeansoftheExpectedShortfallisgivenbythefollowingintegral:t11/nESt(X1:n)=−qX1−(1−s)ds.t0InSect.2wewillmakeuseofintegralsofform(1)inamoregenera

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。