Utility maximization, risk aversion, and stochastic

Utility maximization, risk aversion, and stochastic

ID:40984905

大小:319.42 KB

页数:13页

时间:2019-08-12

Utility maximization, risk aversion, and stochastic_第1页
Utility maximization, risk aversion, and stochastic_第2页
Utility maximization, risk aversion, and stochastic_第3页
Utility maximization, risk aversion, and stochastic_第4页
Utility maximization, risk aversion, and stochastic_第5页
资源描述:

《Utility maximization, risk aversion, and stochastic》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MathFinanEcon(2012)6:113DOI10.1007/s11579-011-0052-3Utilitymaximization,riskaversion,andstochasticdominanceMathiasBeiglböck·JohannesMuhle-Karbe·JohannesTemmeReceived:4April2011/Accepted:14September2011/Publishedonline:25September2011©Springer-Verlag2011AbstractConsideraninvestort

2、radingdynamicallytomaximizeexpectedutilityfromterminalwealth.Ouraimistostudythedependencebetweenherriskaversionandthedis-tributionoftheoptimalterminalpayoff.Economicintuitionsuggeststhathighriskaversionleadstoaratherconcentrateddistribution,whereaslowerriskaversionresultsinahighe

3、raveragepayoffattheexpenseofamorewidespreaddistribution.DybvigandWang(J.Econ.Theory,2011,toappear)findthatthisideacanindeedbeturnedintoarigorousmathematicalstatementinone-periodmodels.Morespecifically,theyshowthatlowerriskaversionleadstoapayoffwhichislargerintermsofsecondorderstoc

4、hasticdominance.Inthepresentstudy,weextendtheirresultsto(weakly)completecontinuous-timemodels.Wealsocom-plementanad-hoccounterexampleofDybvigandWang,byshowingthattheseresultsarefragile,inthesensethattheyfailinessentiallyanymodel,ifthelatterisperturbedonasetofarbitrarilysmallproba

5、bility.Ontheotherhand,weestablishthattheyholdforpowerinvestorsinmodelswith(conditionally)independentincrements.KeywordsUtilitymaximization·Riskaversion·StochasticdominanceJELClassificationG11·C611IntroductionAclassicalprobleminmathematicalfinanceandfinancialeconomicsistomaximizeexpe

6、ctedutilityfromterminalwealth.ThismeansthatgivenatimehorizonTandautilityfunctionM.Beiglböck·J.TemmeFakultätfürMathematik,UniversitätWien,Nordbergstrasse15,1090Wien,Austriae-mail:mathias.beiglboeck@univie.ac.atJ.Temmee-mail:johannes.temme@univie.ac.atJ.Muhle-Karbe(B)DepartementMat

7、hematik,ETHZürich,Rämistrasse101,8092Zürich,Switzerlande-mail:johannes.muhle-karbe@math.ethz.ch1232MathFinanEcon(2012)6:113UdescribingtheinvestorspreferencesonetriestochooseatradingstrategysuchthattheterminalvalueXˆTofthecorrespondingwealthprocessmaximizesE[U(XT)]overallwealthpro

8、cessesofcompetingstrategies.Existenceand

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。