《strategic inaccuracy in bargaining》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
TSE‐541November2014“StrategicInaccuracyinBargaining”SinemHidir StrategicInaccuracyinBargainingSinemHidiryNovember2014AbstractThispaperstudiesabuyer-sellergamewithpre-tradecommunicationofprivatehorizontaltastefromthebuyerfollowedbyatakeitorleaveitoerbytheseller.Theamountofinformationtransmittedimprovesthegainsfromtrade,butalsodetermineshowthissurpluswillbesharedbetweenthetwo.Lackofcommitmenttoapricecreatesahold-upproblemandatradeobetweeneciencyandrentextraction.Inthissetting,coarseinformationarisesduetotheconcernsonthetermsofthetransaction.Asthepreferencesgetlessimportant,informationtransmissionbecomeslessprecise.Itisshownthatinthebuyeroptimalequilibriaofthestaticanddynamicgames,themessagessentarejustinformativeenoughtoensuretrade.Inthedynamicgame,thebuyerisalwaysbetterosendinginfor-mativemessagesonlyattherstperiod,implyingnogainsfromgradualrevelationofinformation.Keywords:information;cheap-talk;bargaining;buyer-sellerrelationJELclassication:C72;D83IamgratefultomyadvisorJacquesCremerforhistimeandadvice,alsoLucasMaestriandHarryDiPeiforusefulcomments.IhavealsobenetedfromdiscussionsSFBSeminarMannheim,NASMinMinnesotaandEEA-ESEMinToulouse.Mistakesremainmine.yToulouseSchoolofEconomics.email:sinem.hidir@tse-fr.eu1 1IntroductionCommunicationplaysanimportantroleinbilateralrelationsinthepresenceofprivateinformation.Insettingswherethereisroomfornegotiation,thepartieswanttobestrategicwhenrevealingtheirpreferences.Abuyermaynotwanttorevealherpreferenceoverdierentoptionswhenfacinganopportunisticseller,inordertoavoidlosinginformationrents.Amongthegoodsthathavethesameintrinsicvalue,thesellercouldproposeadierentpricedependingonhowmuchheestimatesthevaluationofthebuyeris.Byprovidingonlyanestimateofherpreferredoption,thebuyercouldavoidgivingupallbargainingpowertotheseller.Thispaperaddressestheissueofhowabuyercanstrategicallyrevealherpreferencestoanuncommittedsellerviapre-tradecommunication.Therearecaseswhenabuyerchooseshowmuchinformationtoreveal.Whengoingtoarealestateagencyinsearchofahouse,youcouldeitherprovideacertainneighborhoodyouaresearchingfor,orabroaderrangeofthecitywhereyouwouldbewillingtoreside.Whenyoudescribeaveryspecicarea,thesellingagentcanshowhousesthatareexpensiveoronwhichhehasahigherprot,knowingthatyouarerestrictedtothatneighborhood.Ontheotherhand,ifyoudonotrevealyourspecicpreferenceoverneighborhoods,heisbetteroshowingyouhousesofmorereasonablepricesfromdierentareasinordertoincreasetheprobabilitythatyouactuallyendupbuying.Beingveryspecicaboutpreferencescanmakeyougaintimebutloseinformationrents.Thispaperconsidersabuyersearchingforagoodorserviceandhasprivateinformationabouthertasteorneedandshouldcommunicatewiththeseller.Thesellerwillcomeupwithanoerasaresponsetothebuyer'smessage.However,asthesellerhaslackofcommitmenttoaprice,thiscreatesaholdupproblem:knowingwhatthebuyervalues,thesellercanbetterextracthersurplus.Thenthetradeofacedbythebuyeristheonebetweenndingabettertgoodandbeingchargedahigherprice.Inthissetting,thesharingofthegainsfromtradedependsontheextentofinformationrevelation.Thebuyercouldeitherwaitforthesellertomakeoersorprovideinformationabouthertaste.Ifthebuyerprovidesnoinformation,shemightendupnotgettingarelevantoer.Ontheotherhand,themorethebuyerispreciseaboutherpreferences,thehigherthepricethatthesellercanaskher.Tostudythissituation,Iintroduceinformationtransmissionbypre-tradecheaptalkintoabuyer-sellergameandshowthatcoarseinformationarisesduetothecon
ictonthetermsofthetransaction.Bargaininghappensonthehorizontaldimension,amonggoodsthathavethesameintrinsicvalue.Thelackofcommit-mentbythesellertoapriceimpliesthatanyinformationonthebuyer'stasteservesasatoolforrentextraction.Thesellerisfreetomakeanyoerwhilethebuyerholdsprivateinformation,whichcanbeseenasawaytostudyhowmuch2 informationthebuyerwouldliketorevealinthepresenceofextremehold-up.Theamountofinformationprovidedimprovesthematchbetweenthegoodandthebuyer'stype,butprovidesahighershareofthesurplustotheseller.Hencethereisacleartradeobetweeneciencyandrentextraction.Themainresultisthecharacterizationofthebuyeroptimalequilibriumaftershowingtheexistenceofacontinuumofequilibria.Themultiplicitycomesfromthewiderangeofpossibilitiesofcommunication,whichisusualincheaptalkmodels.Aftershowingthatanyequilibriumshouldconsistofmonotonepartitions,meaningthebuyertypespoolinintervals,Isearchfortheequilibriawhicharethebestforthebuyerfromanex-antepointofview,andcallthesebuyer-optimal.Thebuyerdecideshowmuchinformationtoprovide,andalthoughthereexistsmoreinformativeequilibria,includingtheperfectrevelation,thebuyerisbetterounderequilibriainwhichinformationislesspreciseevenifthatmaydecreasethechancesoftrade.Iexplorebothoneperiodanddynamicsettings.Thebuyer-optimalequilibriumintheoneperiodgameistheonehavingthecoarsestinformationstructure(theleastnumberofintervals)thatcoversthemarket(tradetakesplaceforalltypes).Inthisequilibrium,thebuyer'smessagesarejustpreciseenoughtoguaranteetrade:partitionintervalsarethelargestsubjecttotheconstraintthatthesellerdoesn'texcludeanytype.Inotherwords,thebuyeralwaysbenetsfrombeingimpreciseaslongastheseller'soerisstillacceptable.Inthetwoperiodgame,thebuyer'soptimalstrategyistosendinformativemessagesonlyattherstperiodandbabbleincasenextperiodisreached,asthisinducesthesellertomakemorefavorableoersandreducetheexpecteddelayintrade.Hence,itisnotoptimaltograduallyrevealinformationfortheownerofinformationinthissetting.1Now,inapoolingintervalinperiod1,therearesometypesofthebuyerwhowillaccepttheoerandotherswhowillrefuseandmoveontothenextperiod.Oncethenextperiodisreached,theseller'sprioraboutthebuyer'stypeisupdated.Thesellercanaskforahigherpriceinperiod1comparedtothestaticgameandleaveoutsometypestobeservedthenextperiod,ashecangetmoreinformationanddierentiateamongthetypesovertime.Twoinformationalbenetsofsecondperiodforthesellerareidentied:therstoneisthattheintervalofpossibletypesofthebuyershrinkswhenperiod2isreached,andthesecondoneisthepossibilityofanotherinformativesignalinthecomingperiod.Whentheonlyinformativesignalsaresentatperiod1andperiod2messagesarebabbling,thesellernolongerenjoysthesecondtypeofinformationalbenet.Still,thetotalinformationprovidedisenoughtoensuretradeoverthetwoperiods.1ThisisincontrasttoHornerandSkrzypacz(2013),who,althoughinadierentsetting,ndthattheownerofveriableandvaluableinformationwillprefergradualrevelation.3 Inthissetting,thesellerandthebuyerarebothworseowhenthediscountfactorishighenoughandthereisexpecteddelay.Whenthediscountfactorislow,thebuyeroptimalequilibriumistheno-delayequilibriuminwhichtheperiod1intervalsareneenoughthatthesellerdoesn'texcludeanytypeandperiod2isneverreached.Thisisduetodelaybecomingsocostlythatthebuyerisbetterorevealingmoreinformationinordertoavoidit.Theno-delayequilibriumgiveshigherprotstothesellerandresultsinhigherwelfarecomparedtotheoneperiodgame.Toeliminateinecientequilibriainthedynamicsetting,asubdivisioncondi-tionisprovidedwhichistheseparationoftypeswhorejecttheoerinagivenperiodandareinitiallyconnectedinanintervalintotwoormoreintervalsbysendingseparatemessagesinthenextperiod.ItisshownthatanyequilibriumwithsubdivisionisParetodominated.Thedynamicmodelistractableasthethresholdtypesinoneperiodarealsothresholdtypesinthenextperiodincaseofrejectingthecurrentoer,hencetheirincentivecompatibilityconstraintissat-ised.Then,duetothemonotonicityofstrategies,theincentivecompatibilityofthetypesinsidetheintervalisalsosatised.Finally,whenthegameisextendedtoinnitehorizon,itisshownthatitisalwaysmoreoptimalthattheonlyinformativesignalsaresentatperiod1.Sendingbabblingmessagesatt>1decreasesexpecteddelay:theperiod1intervalsarenerwhenfuturemessagesarebabblingandthesellerexcludeslesstypesineachperiod.Foranyequilibriumwhichhasinformativesignalsinfutureperiods,thereisanotheronefoundbymodifyingthesignalstructuresuchthattheonlyinformativesignalsaresentatperiod1anddoesstrictlybetterintermsofbuyerandsellersurplus.Inthedynamicgame,thediscountfactoriswhatpreventsthesellerfromndingthegoodthatperfectlytsthebuyer'stasteandextractingallhersurplus.Thereasonfornongradualismininformationrevelationisthatifinformationiseventuallygoingtoberevealed,itisalwaysmoreecienttorevealitatperiod1insteadoflater,asthereisatimecostofdelayingtradeandthesellerwillleaveoutmoretypestodayifheexpectsmoreinformationtoarrivetomorrow.Whenfuturemessagesareuninformative,thesellerismoreeagertosellearlier,whichmeansalowerpriceandlessexpecteddelay.Theuncertaintyisnotontheextentoftheinformationthebuyeriswillingtoprovide,butontheinformationitself.Hence,thebuyerisbetteroresolvingthisuncertaintyinthebeginningandwaitingforthesellertomakeoersbutnotprovidingmoreinformationinthecomingperiods.Finally,theresultsofthedynamicgamesuggeststhattheownerofinformationdoesnotgainfromgraduallyrevealinginformationinthissetting.4 1.1RelatedLiteratureHornerandSkyrypacz(2013)studyadynamicproblembetweenarmandanagentwhohasvaluableandveriableinformation.Thelackofcommitmentleadstoaholdupproblem:thermhastopayfortheinformationbeforeknowingifitisvaluable,asoncetheinformationisprovidedthermwouldnotbewillingtopayatall.Hence,thesellerofinformationbenetsfromthegradualrevelationofhisinformation.Thereisarecentliteratureaboutthesellerincentivestodisclosehorizontalmatchinformation,suchasAndersonandRenault(2006),Sun(2011)andKoesslerandRenault(2012).Thedeparturefromthisliteratureisthatinthispaperthefocusisonthebuyer'sincentivetoprovideinformationinabargainingsetting.Thispaperisalsorelatedtotheliteratureonstrategicinformationtransmis-sion,pioneeredbyCrawfordandSobel(1982).However,thecon
ictofinterestontheoutcomepresentintheirpaperandtheliteraturethatfollowsdoesnotarisehere,andinsteadthecon
ictisduetothesharingofthesurplus.Golosovetal.(2013)studythedynamicversionoftheCrawfordandSobelmodelinwhichthesellertakesadecisioneveryperiod2andKrishnaandMorgan(2004)showthataddinganex-antecommunicationstageimprovestheoutcomeofthecommunica-tiongame.LevyandRazin(2007)showthatlinkingdecisionstogethermayreducecommunicationduetospillovereects,specicallythatthecon
ictofinterestononeissuemayimpedecommunicationonanotherissue.3Finally,thepaperisrelatedtothebargainingliterature.Thesettingofthispapercanbeseenasanexantestageinwhichagoodtobebargainedisbeingpickedamongmany,usingtheinformationprovidedbythebuyer.Asthereisnoverticaluncertainty,thesamegoodisoeredonlyonce.ThereasonIruleoutverticaluncertaintyisinordertohighlightthepreferencerevelationaspect,andinpresenceofverticaldierentiationthebuyerwouldnothaveanincentivetorevealthatshehasahighvaluation.Intheextensionpart,Ishowthisbyconsideringasimpleoneperiodexamplebyintroducinguncertaintyontheverticalvaluation.Therestofthepaperisorganizedasfollows:Section2explainsthegeneralmodel,section3solvesfortheequilibriumoftheoneperiodgame,section4studiesthetwoperiodssetting,section5studiestheinnitegame,section6providesanextension,andsection7concludes.TheomittedproofsandsolutionscanbefoundintheAppendixattheendofthepaper.2Theyshowthatfullrevelationispossiblebyconstructinganon-monotonicpartitionequi-librium,inwhichfarawaytypespoolinitiallyandseparatelateron.Incontrast,inthispaperthereisaonetimedecisionanditiscostlytodelaytrade.Hence,althoughfullrevelationcouldbesupportedasanequilibrium,itisinferiorforthebuyerfromanex-antepointofview.3Thisrelatestothecurrentpaperastwodimensionsarebeingagreedupon,howevertheinformationtransmissionhappensonlyononedimensionandthereisabargainingstagethatfollowsthemessage.5 2TheModelTherearetwoplayers,abuyer(B)andaseller(S)whointeractinordertoagreeontheonetimeexchangeofagoodorservice.Thebuyerprivatelyobserveshertype,arandomvariablein[0;1]whichdeterminesherhorizontaltasteforthegood.Thesellercanoerfromacontinuumofgoods,y2[0;1].TheutilityofthebuyerfromagoodyisU(;y)=k f(j yj),wheref,thecostofmismatchbetweenthegoodandthebuyer'stype,isstrictlyconvexinj yj4,U>0(the12preferredgoodofthebuyerisincreasinginhistype),U22<0(thereisasinglegoodthatperfectlytseachtypeofthebuyer).Thesellerisassumedindierentamongdierentgoodsandhisvaluationisnormalizedtozero,whichwillimplythattradeisalwaysoptimal.Thesellerwouldliketondthebesttforthebuyerorderinordertogetthehighestprots.Outsideoptionsarezero.Verticalheterogeneityinbuyervaluationisstudiedasanextension,andthemainpartofthepaperfocusesonthehorizontaltasteparameterandtheseller'sincentivetochargedierentpricesforgoodshavingthesameintrinsicvalue.First,thebuyersendsacostlessmessage,m2Mtotheseller,whorespondsbyanoerconsistingofagoody(m)andatransfer(m).IfBacceptstheoer,thegameendswithrealizedpayosU(;y) and.Themaximumutility,k,iswhatthebuyercangetfromagoodthatperfectlymatcheshertaste.Itissmallenoughthatintheabsenceofinformationthemarketwillnotbecovered,inotherwordstheseller'soerwillexcludesometypesofthebuyer.Thetotalsurplusfromtradeismaximizedwheny=,incaseeverytypegetstheirmostpreferredgood.Thecrucialassumptionisthatthesellercannotcommittoapricescheduleex-ante.Ifhecould,thenhewouldextractthemaximumrent,kthroughatruthfulrevelationmechanism.2.1EquilibriumAnalysisThesolutionconceptthatwillbeusedisPerfectBayesianEquilibrium.Given,(mj)isthesignalingstrategyofthebuyer.Theseller'sstrategyisanoer(y(m);(m)),towhichthebuyerrespondsby(y;)20;1)5.StrategiesthatconstituteaPBEsatisfy:forany2(0;1),if(mj)>0,thenU(;y(m)) (m)U(;y(m0)) (m0)forallm02M.(B'smessagemaximizesherutilityamongfeasiblemessagesgivenS'soptimalresponse.)4theresultscontinuetoholdforanyfaslongasitisnottooconcave,showninthelemma35duetotheassumptionthatwhenthebuyerisindierentbetweenacceptingtheoerornot,shewillaccept6 R1foranym,(y(m);(m))=argmaxy;0(y;)(jm)dwhere(mj)f(m)(jm)=R1(mjt)f(t)dt0(SmakestheoerwhichmaximizeshisexpectedprotsasaresponsetothemessagesentbyB.)2.2SomePropertiesandDenitionsThissectionintroducessomepropertiesthatwillbeusedthroughoutthepaper.Denition1.Amonotonepartitionequilibriumisoneinwhichthebuyertypespace[0;1]isdividedintonintervalswithboundarypoints0=a1