clustering mutual funds by return and risk levels

clustering mutual funds by return and risk levels

ID:7266695

大小:135.90 KB

页数:10页

时间:2018-02-09

clustering mutual funds by return and risk levels_第1页
clustering mutual funds by return and risk levels_第2页
clustering mutual funds by return and risk levels_第3页
clustering mutual funds by return and risk levels_第4页
clustering mutual funds by return and risk levels_第5页
资源描述:

《clustering mutual funds by return and risk levels》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、ClusteringmutualfundsbyreturnandrisklevelsFrancescoLisiandEdoardoOtrantoAbstract.Mutualfundsclassifications,oftenmadebyratingagencies,areverycommonandsometimescriticised.Inthiswork,athree-stepstatisticalprocedureformutualfundsclassificationisproposed.Inthefirststepfundtimeseriesarecha

2、racterisedintermsofreturns.Inthesecondstep,aclusteringanalysisisperformedinordertoobtainclassesofhomogeneousfundswithrespecttotherisklevels.Inparticular,theriskisdefinedstartingfromanAsymmetricThreshold-GARCHmodelaimedtodescribeminimum,normalandturmoilrisk.Thethirdstepmergestheprevi

3、oustwo.Anapplicationto75Europeanfundsbelongingto5differentcategoriesispresented.Keywords:clustering,GARCHmodels,financialrisk1IntroductionThenumberofmutualfundshasgrowndramaticallyoverrecentyears.Thishasledtoanumberofclassificationschemesthatshouldgivereliableinformationtoinvestorson

4、featuresandperformanceoffunds.Mostoftheseclassificationsareproducedbynationalorinternationalratingagencies.Forexample,Morningstargroupsfundsintocategoriesaccordingtotheiractualinvestmentstyle,portfoliocomposition,capitali-sation,growthprospects,etc.Thisinformationisthenused,together

5、withthatrelatedtoreturns,risksandcosts,tosetupamoreconciseclassificationcommonlyreferredtoasStarRating(see[11]fordetails).Actually,eachratingagencyhasaspecificownerevaluationmethodandalsonationalassociationsofmutualfundsmanagerskeepandpublishtheirownclassifications.Problemsariseas,ing

6、eneral,classesofdifferentclassificationsdonotcoincide.Also,allclassificationprocedureshavesomedrawback;forexample,theyareoftenbasedonsubjectiveinformationandrequirelongelaborationtime(see,forexample,[15]).Inthestatisticalliterature,classificationoffinancialtimeserieshasreceivedrel-ativ

7、elylittleattention.Inaddition,tothebestofourknowledge,therearenocompar-isonsbetweendifferentproposedclassificationsandthoseoftheratingagencies.Someauthorsuseonlyreturnsforgroupingfinancialtimeseries.Forexample,[15]proposeM.Corazzaetal.(eds.),MathematicalandStatisticalMethodsforActuar

8、ialSciencesandFinance©Spri

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。