欢迎来到天天文库
浏览记录
ID:707570
大小:42.50 KB
页数:19页
时间:2017-09-02
《哥德巴赫猜想证明者(精选多篇)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、哥德巴赫猜想证明者(精选多篇)第一篇:哥德巴赫猜想的证明猜想1每个不小于6的偶数都可以表示为两个奇素数之和猜想2.每个不小于9的奇数都可以表示为三个奇素数之和。证明:设:m为整数且≥3;a,a1,a2,a3,a4,a5,a6,a7,a8,a9,b1,b2,b3,b4,b5,b6,b7,b8,b9,为整数且≥1∵m为整数且≥3∴2m为偶数且≥6尾数为1且尾数为1且≥121的和数可表示为:①(10a+1)*(10b+1),2m>121②(10a1+3)*(10b1+7),2m>221③(10a2+9)*(10b2+9),2m>361尾数为3且尾数为3且≥143的和数可表示为:④(10a3+1
2、)*(10b3+3),2m>143⑤(10a4+7)*(10b4+9),2m>323大于0且尾数为5的整数除了5,其余皆为和数尾数为7且尾数为7且≥187的和数可表示为:⑥(10a5+1)*(10b5+7),2m>187⑦哥德巴赫猜想证明者(精选多篇)第一篇:哥德巴赫猜想的证明猜想1每个不小于6的偶数都可以表示为两个奇素数之和猜想2.每个不小于9的奇数都可以表示为三个奇素数之和。证明:设:m为整数且≥3;a,a1,a2,a3,a4,a5,a6,a7,a8,a9,b1,b2,b3,b4,b5,b6,b7,b8,b9,为整数且≥1∵m为整数且≥3∴2m为偶数且≥6尾数为1且尾数为1且≥121
3、的和数可表示为:①(10a+1)*(10b+1),2m>121②(10a1+3)*(10b1+7),2m>221③(10a2+9)*(10b2+9),2m>361尾数为3且尾数为3且≥143的和数可表示为:④(10a3+1)*(10b3+3),2m>143⑤(10a4+7)*(10b4+9),2m>323大于0且尾数为5的整数除了5,其余皆为和数尾数为7且尾数为7且≥187的和数可表示为:⑥(10a5+1)*(10b5+7),2m>187⑦哥德巴赫猜想证明者(精选多篇)第一篇:哥德巴赫猜想的证明猜想1每个不小于6的偶数都可以表示为两个奇素数之和猜想2.每个不小于9的奇数都可以表示为三个奇
4、素数之和。证明:设:m为整数且≥3;a,a1,a2,a3,a4,a5,a6,a7,a8,a9,b1,b2,b3,b4,b5,b6,b7,b8,b9,为整数且≥1∵m为整数且≥3∴2m为偶数且≥6尾数为1且尾数为1且≥121的和数可表示为:①(10a+1)*(10b+1),2m>121②(10a1+3)*(10b1+7),2m>221③(10a2+9)*(10b2+9),2m>361尾数为3且尾数为3且≥143的和数可表示为:④(10a3+1)*(10b3+3),2m>143⑤(10a4+7)*(10b4+9),2m>323大于0且尾数为5的整数除了5,其余皆为和数尾数为7且尾数为7且≥1
5、87的和数可表示为:⑥(10a5+1)*(10b5+7),2m>187⑦哥德巴赫猜想证明者(精选多篇)第一篇:哥德巴赫猜想的证明猜想1每个不小于6的偶数都可以表示为两个奇素数之和猜想2.每个不小于9的奇数都可以表示为三个奇素数之和。证明:设:m为整数且≥3;a,a1,a2,a3,a4,a5,a6,a7,a8,a9,b1,b2,b3,b4,b5,b6,b7,b8,b9,为整数且≥1∵m为整数且≥3∴2m为偶数且≥6尾数为1且尾数为1且≥121的和数可表示为:①(10a+1)*(10b+1),2m>121②(10a1+3)*(10b1+7),2m>221③(10a2+9)*(10b2+9),
6、2m>361尾数为3且尾数为3且≥143的和数可表示为:④(10a3+1)*(10b3+3),2m>143⑤(10a4+7)*(10b4+9),2m>323大于0且尾数为5的整数除了5,其余皆为和数尾数为7且尾数为7且≥187的和数可表示为:⑥(10a5+1)*(10b5+7),2m>187⑦(10a6+3)*(10b6+9),2m>247尾数为9且尾数为9且≥169的和数可表示为:⑧(10a7+1)*(10b7+9),2m>209⑨(10a8+3)*(10b8+3),2m>169⑩(10a9+7)*(10b9+7),2m>289∵a,a1,a2,a3,a4,a5,a6,a7,a8,a9
7、,b1,b2,b3,b4,b5,b6,b7,b8,b9,为整数且≥1令代数式①,②,③,……,⑩分别小于2m则ab,a1b1,a2b2,……,a9b9分别可以表示:当代数式①,②,③,……,⑩分别又∵大于等于3且小于2m的奇数可以求出为m-1个∴ab可表示代数式①所能表示的数的个数与大于于3且小于2m的奇数的个数的m?1比(10a+1)*(10b+1)ab2m?10a?10b?1∵12m?10a?10b?1存在极大值50100(m?
此文档下载收益归作者所有