高中数学 子集、全集、补集练习题 新人教a版必修1

高中数学 子集、全集、补集练习题 新人教a版必修1

ID:7032811

大小:59.50 KB

页数:4页

时间:2018-02-02

高中数学 子集、全集、补集练习题 新人教a版必修1_第1页
高中数学 子集、全集、补集练习题 新人教a版必修1_第2页
高中数学 子集、全集、补集练习题 新人教a版必修1_第3页
高中数学 子集、全集、补集练习题 新人教a版必修1_第4页
资源描述:

《高中数学 子集、全集、补集练习题 新人教a版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、子集、全集、补集练习题及答案例1判定以下关系是否正确(2){1,2,3}={3,2,1}(4)0∈{0}分析空集是任何集合的子集,是任何非空集合的真子集.解根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2列举集合{1,2,3}的所有子集.分析子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3};含有3个元素的子集有{1,2,3}.共有子集8个.________.分析A中必含有元素a,b,又A是{a,b,c,d}

2、真子集,所以满足条件的A有:{a,b},{a,b,c}{a,b,d}.答共3个.说明:必须考虑A中元素受到的所有约束.[]分析作出4图形.答选C.说明:考虑集合之间的关系,用图形解决比较方便.4用心爱心专心点击思维例5设集合A={x

3、x=5-4a+a2,a∈R},B={y

4、y=4b2+4b+2,b∈R},则下列关系式中正确的[]分析问题转化为求两个二次函数的值域问题,事实上x=5-4a+a2=(2-a)2+1≥1,y=4b2+4b+2=(2b+1)2+1≥1,所以它们的值域是相同的,因此A=B.答选A.说明:要注意集合中谁是元素.M与P的关系是[]A.M=UP    

5、          B.M=P分析可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M=UN=U(UP)=P;三是利用画图的方法.答选B.说明:一题多解可以锻炼发散思维.例7下列命题中正确的是[]A.U(UA)={A}4用心爱心专心分析D选择项中A∈B似乎不合常规,而这恰恰是惟一正确的选择支.是由这所有子集组成的集合,集合A是其中的一个元素.∴A∈B.答选D.说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8已知集合A={2,4,6,8,9},B={1,2,3,5,8},又知非空集合C是这样一个集合:其各元素都加2后,就变为A的一个

6、子集;若各元素都减2后,则变为B的一个子集,求集合C.分析逆向操作:A中元素减2得0,2,4,6,7,则C中元素必在其中;B中元素加2得3,4,5,7,10,则C中元素必在其中;所以C中元素只能是4或7.答C={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9设S={1,2,3,4},且M={x∈S

7、x2-5x+p=0},若SM={1,4},则p=________.分析本题渗透了方程的根与系数关系理论,由于SM={1,4},∴M={2,3}则由韦达定理可解.答p=2×3=6.说明:集合问题常常与方程问题相结合.例10已知集合S={2,3,a2+2a

8、-3},A={

9、a+1

10、,2},SA={a+3},求a的值.S这个集合是集合A与集合SA的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解由补集概念及集合中元素互异性知a应满足4用心爱心专心在(1)中,由①得a=0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a=-3,a=2,分别代入②③④检验,a=-3不合②,故舍去,a=2能满足②③④.故a=2符合题意.说明:分类要做到不重不漏.[]A.M=ND.M与N没有相同元素分析分别令k=…,-1,0,1,2,3,…得答选C.说明:判断两个集合的包含或者相等关系要注

11、意集合元素的无序性4用心爱心专心

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。