等差等比数列练习题(含答案)以及基础知识点 2

等差等比数列练习题(含答案)以及基础知识点 2

ID:6881655

大小:491.37 KB

页数:8页

时间:2018-01-29

等差等比数列练习题(含答案)以及基础知识点 2_第1页
等差等比数列练习题(含答案)以及基础知识点 2_第2页
等差等比数列练习题(含答案)以及基础知识点 2_第3页
等差等比数列练习题(含答案)以及基础知识点 2_第4页
等差等比数列练习题(含答案)以及基础知识点 2_第5页
资源描述:

《等差等比数列练习题(含答案)以及基础知识点 2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、一、等差等比数列基础知识点(一)知识归纳:1.概念与公式:①等差数列:1°.定义:若数列称等差数列;2°.通项公式:3°.前n项和公式:公式:②等比数列:1°.定义若数列(常数),则称等比数列;2°.通项公式:3°.前n项和公式:当q=1时2.简单性质:①首尾项性质:设数列1°.若是等差数列,则2°.若是等比数列,则②中项及性质:1°.设a,A,b成等差数列,则A称a、b的等差中项,且2°.设a,G,b成等比数列,则G称a、b的等比中项,且③设p、q、r、s为正整数,且1°.若是等差数列,则2°.若是等比数列,则④顺次n项和性质:1°.若是公差为d的等

2、差数列,组成公差为n2d的等差数列;2°.若是公差为q的等比数列,组成公差为qn的等比数列.(注意:当q=-1,n为偶数时这个结论不成立)⑤若是等比数列,8则顺次n项的乘积:组成公比这的等比数列.⑥若是公差为d的等差数列,1°.若n为奇数,则而S奇、S偶指所有奇数项、所有偶数项的和);2°.若n为偶数,则(二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d≠0的等差数列的通项公式是项n的一次函数an=an+b;②公差d≠0的等差数列的前n项和公式项数n的没有常数项的二次函数Sn=an2+bn;③公比q≠1的等比数列的前n项

3、公式可以写成“Sn=a(1-qn)的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m(或a-m,a,a+m)”②三数成等比数列,可设三数为“a,aq,aq2(或,a,aq)”③四数成等差数列,可设四数为“”④四数成等比数列,可设四数为“”等等;类似的经验还很多,应在学习中总结经验.[例1]解答下述问题:(Ⅰ)已知成等差数列,求证:(1)成等差数

4、列;(2)成等比数列.[解析]该问题应该选择“中项”的知识解决,①②[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,.①②8(Ⅱ)等比数列的项数n为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为,求项数n.[解析]设公比为(Ⅲ)等差数列{an}中,公差d≠0,在此数列中依次取出部分项组成的数列:求数列[解析]①,②①②[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功.[例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第

5、二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单,设等差数列的三项分别为a-d,a,a+d,则有(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数.8[解析]设此四数为,解得所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列练习题一、选择题1、如果一个数列既是等差数列,又是等比数列,则此数列()(A)为常数数列(B)为非零的常数数列(C)存在且唯一(D)不存在2.、在

6、等差数列中,,且,,成等比数列,则的通项公式为()(A)(B)(C)或(D)或3、已知成等比数列,且分别为与、与的等差中项,则的值为()(A)(B)(C)(D)不确定4、互不相等的三个正数成等差数列,是a,b的等比中项,是b,c的等比中项,那么,,三个数()(A)成等差数列不成等比数列(B)成等比数列不成等差数列(C)既成等差数列又成等比数列(D)既不成等差数列,又不成等比数列5、已知数列的前项和为,,则此数列的通项公式为()(A)(B)(C)(D)6、已知,则()(A)成等差数列(B)成等比数列(C)成等差数列(D)成等比数列7、数列的前项和,则关于

7、数列的下列说法中,正确的个数有()①一定是等比数列,但不可能是等差数列②一定是等差数列,但不可能是等比数列③可能是等比数列,也可能是等差数列④8可能既不是等差数列,又不是等比数列⑤可能既是等差数列,又是等比数列(A)4(B)3(C)2(D)18、数列1,前n项和为()(A)(B)(C)(D)9、若两个等差数列、的前项和分别为、,且满足,则的值为()(A)(B)(C)(D)10、已知数列的前项和为,则数列的前10项和为()(A)56(B)58(C)62(D)6011、已知数列的通项公式为,从中依次取出第3,9,27,…3n,…项,按原来的顺序排成一个新的

8、数列,则此数列的前n项和为()(A)(B)(C)(D)12、下列命题中是真命题的是()A.数列

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。