有理数的概念--教案+例题+习题

有理数的概念--教案+例题+习题

ID:6733813

大小:104.00 KB

页数:10页

时间:2018-01-23

有理数的概念--教案+例题+习题_第1页
有理数的概念--教案+例题+习题_第2页
有理数的概念--教案+例题+习题_第3页
有理数的概念--教案+例题+习题_第4页
有理数的概念--教案+例题+习题_第5页
资源描述:

《有理数的概念--教案+例题+习题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、有理数的概念         一、目标认知学习目标:  了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量。掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小。掌握一个数的绝对值的求法和性质,进一步学习使用数轴,借助数轴理解绝对值的几何意义。重点:  有理数的概念及其分类,相反数的概念及求法,绝对值的概念及求法,数轴的概念及应用;有理数比较大小难点:  绝对值的概念及求法,尤其是用字母表示的时候的意义。运用数轴理解绝对值的几何意义。有理数比较大小的方法的掌握。二、知识要点梳理知识点一:负数的引入要点诠释:  正数和负数是根据

2、实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6℃和零下6℃等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。  用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。知识点二:正数和负数的概念要点诠释:(1)像3、1.5、、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正

3、数,正数比0大。(2)像-3、-1.5、、-584等在正数前面加“-”(读作负)号的数,叫做负数。负数比0小。(3)零既不是正数也不是负数,零是正数和负数的分界。注意:(1)为了强调,正数前面有时也可以加上“+”(读作正)号,  例如:3、1.5、也可以写作+3、+1.5、+。(2)对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。  例如:-a一定是负数吗?答案是不一定。因为字母a可以表示任意的数,     若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;     当a表示负数时,-a就不是负数了(此时-a是正数)。知识点三:有理数的有关

4、概念要点诠释:1、有理数:整数和分数统称为有理数。注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。    但是本节中的分数不包括分母是1的分数。 (2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,     所以我们把有限小数和无限循环小数都看作分数。 (3)“0”即不是正数,也不是负数,但“0”是整数。2、整数包括正整数、零、负整数。例如:1、2、3、0、-1、-2、-3等等。3、分数包括正分数和负分数,例如:、、0.6、-、-、-0.6等等。知识点四:有理数的分类要点诠释:1、按整数、分数的关系分类:2、按正数、负数与0的关系

5、分类:注:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数。如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a0表明a是非负数;a0表明a是非正数。知识点五:数轴的概念要点诠释:  规定了原点、正方向和单位长度的直线叫做数轴  数轴的定义包含三层含义:(1)数轴是一条直线,可以向两端无限延伸;(2)数轴有三要素——原点、正方向、单位长度,三者缺一不可;(3)原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的(通常取向右为正方向)。      知识点六:数轴的画法要点诠释:1、画一条直线(

6、一般画成水平的直线)。2、在直线上选取一点为原点,并用这点表示零(在原点下面标上“0”)。3、确定正方向(一般规定向右为正),用箭头表示出来。4、选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次表示为1,2,3……;从原点向左,每隔一个单位长度取一点,依次表示为-1,-2,-3……注:(1)原点的位置、单位长度的大小可根据实际情况适当选取; (2)确定单位长度时,根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点, 从原点向右,依次表示为2,4,6,……;从原点向左,依次表示为-2,-4,-6,……;知识点七:数轴上的点与有理数的关系所有的有理数都可以用数轴

7、上的点表示出来,反过来,不能说数轴上所有的点都表示有理数。要点诠释: 正有理数可以用原点右边的点表示,负有理数可以用原点左边的点表示,零用原点表示。知识点八:利用数轴比较有理数的大小要点诠释:  在数轴上表示的两个数,右边的数总比左边的数大。正数都大于0;负数都小于0;正数大于一切负数。知识点九:相反数的概念1、相反数的几何定义:在数轴上原点的两旁,到原点距离相等的两个点所表示的数,叫做互为相反数。2、相反数的代数定义:只有符号不同的两个数(除

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。