场效应管在开关电路中的应用

场效应管在开关电路中的应用

ID:6652992

大小:338.50 KB

页数:7页

时间:2018-01-21

场效应管在开关电路中的应用_第1页
场效应管在开关电路中的应用_第2页
场效应管在开关电路中的应用_第3页
场效应管在开关电路中的应用_第4页
场效应管在开关电路中的应用_第5页
资源描述:

《场效应管在开关电路中的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、P2003BDG只是普通的N沟道场效应三极管而且,工作参数20A/30V场效应管在开关电路中的应用场效应管在mpn中,它的长相和我们前面讲的三极管极像,所以有不少修mpn的朋友好长时间还分不清楚,统一的把这些长相相同的三极管、场效应管、双二极管、还有各种稳压IC统统称作“三个脚的管管”,呵呵,如果这样麻木不分的话,你的维修技术恐怕很难快速提高的哦!好了,说到这里场效应管的长相恐怕我就不用贴图了,在电路图中它常用 表示,关于它的构造原理由于比较抽象,我们是通俗化讲它的使用,所以不去多讲,由于根据使用的场合要求不同做出来的种类繁多,特性也都不尽相同;我们在mpn中常用的一般是作为电源

2、供电的电控之开关使用,所以需要通过电流比较大,所以是使用的比较特殊的一种制造方法做出来了增强型的场效应管(MOS型),它的电路图符号:仔细看看你会发现,这两个图似乎有差别,对了,这实际上是两种不同的增强型场效应管,第一个那个叫N沟道增强型场效应管,第二个那个叫P沟道增强型场效应管,它们的的作用是刚好相反的。前面说过,场效应管是用电控制的开关,那么我们就先讲一下怎么使用它来当开关的,从图中我们可以看到它也像三极管一样有三个脚,这三个脚分别叫做栅极(G)、源极(S)和漏极(D),mpn中的贴片元件示意图是这个样子:1脚就是栅极,这个栅极就是控制极,在栅极加上电压和不加上电压来控制2脚

3、和3脚的相通与不相通,N沟道的,在栅极加上电压2脚和3脚就通电了,去掉电压就关断了,而P沟道的刚好相反,在栅极加上电压就关断(高电位),去掉电压(低电位)就相通了!我们常见的2606主控电路图中的电源开机电路中经常遇到的就是P沟道MOS管:这个图中的SI2305就是P沟道MOS管,由于有很多朋友对于检查这一部分的故障很茫然,所以在这里很有必要讲一下它的工作原理,来加深一下你的印象!图中电池的正电通过开关S1接到场效应管Q1的2脚源极,由于Q1是一个P沟道管,它的1脚栅极通过R20电阻提供一个正电位电压,所以不能通电,电压不能继续通过,3v稳压IC输入脚得不到电压所以就不能工作不开

4、机!这时,如果我们按下SW1开机按键时,正电通过按键、R11、R23、D4加到三极管Q2的基极,三极管Q2的基极得到一个正电位,三极管导通(前面讲到三极管的时候已经讲过),由于三极管的发射极直接接地,三极管Q2导通就相当于Q1的栅极直接接地,加在它上面的通过R20电阻的电压就直接入了地,Q1的栅极就从高电位变为低电位,Q1导通电就从Q1同过加到3v稳压IC的输入脚,3v稳压IC就是那个U1输出3v的工作电压vcc供给主控,主控通过复位清0,读取固件程序检测等一系列动作,输处一个控制电压到PWR_ON再通过R24、R13分压送到Q2的基极,保持Q2一直处于导通状态,即使你松开开机键

5、断开Q1的基极电压,这时候有主控送来的控制电压保持着,Q2也就一直能够处于导通状态,Q1就能源源不断的给3v稳压IC提供工作电压!SW1还同时通过R11、R30两个电阻的分压,给主控PLAYON脚送去时间长短、次数不同的控制信号,主控通过固件鉴别是播放、暂停、开机、关机而输出不同的结果给相应的控制点,以达到不同的工作状态!结型场效应管(N沟道JFET)工作原理:    可将N沟道JFET看作带“人工智能开关”的水龙头。这就有三部分:进水、人工智能开关、出水,可以分别看成是JFET的d极、g极、s极。   “人工”体现了开关的“控制”作用即vGS。JFET工作时,在栅极与源极之间需

6、加一负电压(vGS<0),使栅极、沟道间的PN结反偏,栅极电流iG≈0,场效应管呈现高达107Ω以上的输入电阻。在漏极与源极之间加一正电压(vDS>0),使N沟道中的多数载流子(电子)在电场作用下由源极向漏极运动,形成电流iD。iD的大小受“人工开关”vGS的控制,vGS由零往负向增大时,PN结的耗尽层将加宽,导电沟道变窄,vGS绝对值越大则人工开关越接近于关上,流出的水(iD)肯定越来越小了,当你把开关关到一定程度的时候水就不流了。   “智能”体现了开关的“影响”作用,当水龙头两端压力差(vDS)越大时,则人工开关自动智能“生长”。vDS值越大则人工开关生长越快,流水沟道越接

7、近于关上,流出的水(iD)肯定越小了,当人工开关生长到一定程度的时候水也就不流了。理论上,随着vDS逐渐增加,一方面沟道电场强度加大,有利于漏极电流iD增加;另一方面,有了vDS,就在由源极经沟道到漏极组成的N型半导体区域中,产生了一个沿沟道的电位梯度。由于N沟道的电位从源端到漏端是逐渐升高的,所以在从源端到漏端的不同位置上,漏极与沟道之间的电位差是不相等的,离源极越远,电位差越大,加到该处PN结的反向电压也越大,耗尽层也越向N型半导体中心扩展,使靠近漏极处的导电沟道比靠近源极要

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。