2012.2013广东高考数学知识点总结

2012.2013广东高考数学知识点总结

ID:6577551

大小:2.19 MB

页数:77页

时间:2018-01-18

2012.2013广东高考数学知识点总结_第1页
2012.2013广东高考数学知识点总结_第2页
2012.2013广东高考数学知识点总结_第3页
2012.2013广东高考数学知识点总结_第4页
2012.2013广东高考数学知识点总结_第5页
资源描述:

《2012.2013广东高考数学知识点总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、高中数学第一章-集合§01.集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A=B.如果.[注]:①Z={整数}(√)Z={全体整数}(×)②已知集合S中A的补集是

2、一个有限集,则集合A也是有限集.(×)(例:S=N;A=,则CsA={0})③空集的补集是全集.④若集合A=集合B,则CBA=,CAB=CS(CAB)=D(注:CAB=).3.①{(x,y)

3、xy=0,x∈R,y∈R}坐标轴上的点集.②{(x,y)

4、xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)

5、xy>0,x∈R,y∈R}一、三象限的点集.[注]:①对方程组解的集合应是点集.第77页共77页例:解的集合{(2,1)}.②点集与数集的交集是.(例:A={(x,y)

6、y=x+1}B={y

7、y=x2+1}则A∩

8、B=)4.①n个元素的子集有2n个.②n个元素的真子集有2n-1个.③n个元素的非空真子集有2n-2个.5.⑴①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题.②一个命题为真,则它的逆否命题一定为真.原命题逆否命题.例:①若应是真命题.解:逆否:a=2且b=3,则a+b=5,成立,所以此命题为真.②.解:逆否:x+y=3x=1或y=2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.1.例:若.2.集合运算:交、并、补.3.主要性质和运算律(1)包含关系:(2)等价关系:(3)集

9、合的运算律:交换律:结合律:分配律:.0-1律:等幂律:求补律:A∩CUA=φA∪CUA=UðCUU=φðCUφ=U反演律:CU(A∩B)=(CUA)∪(CUB)CU(A∪B)=(CUA)∩(CUB)第77页共77页(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)奇穿偶不穿①将不等式化为a0(x-x1)(x-x2)…(x-xm)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等

10、式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.(自右向左正负相间)则不等式的解可以根据各区间的符号确定.特例①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.二次函数()的图象一元二次方程有两相异实根有两相等实根无实根R2.分式不等式的解法(1)标准化:移项通分化为>0(或<0);≥0(或≤0)的形式,(2)转化为整式不等式(组)第77页共77页3.含绝对值不等式的解法(1)公式法:,与型的不等式的解法.(2)定

11、义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

12、构成复合命题的形式:p或q(记作“p∨q”);p且q(记作“p∧q”);非p(记作“┑q”)。3、“或”、“且”、“非”的真值判断(1)“非p”形式复合命题的真假与F的真假相反;(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若P则q;逆命题:若q则p;否命题:若┑P则┑q;逆否命题:若┑q则┑p。(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3

13、)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.5、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)①、原命题为真,它的逆命题不一定为真。②、原命题为真,它的否命题不一定为真。③、原命题为真,它的逆否命题一定为真。6、如果已知pq那么我们说,p是q的充分条件,q是p的必要条件。若pq且qp,则称p是q

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。