欢迎来到天天文库
浏览记录
ID:6577162
大小:148.00 KB
页数:16页
时间:2018-01-18
《18.2勾股定理的逆定理教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、18.2勾股定理的逆定理从容说课本节从古埃及人画直角的方法谈起,然后让学生画一些三角形(已知三边,并且两边的平方和等于第三边的平方).从而发现画出的三角形是直角三角形.猜想如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,即教科书中的命题2,把命题2的条件,结论与上节命题1的条件、结论作比较,引出逆命题的概念.接着探究证明命题2的思路,用三角形全等证明命题2后,顺势引出逆定理的概念。命题1,命题2属于原命题成立,逆命题也成立的情况.为了防止学生由此误认为原命题成立,逆命题
2、一定成立,教科书特别举例说明有的原命题成立,逆命题不成立.本节的重点是,如何用三角形三边之间的关系判断一个三角形是否为直角三角形。难点是会应用直角三角形判别方法解决实际问题,教学时要给学生充分交流的时间和空间,让学生学会自主学习.18.2勾股定理的逆定理(一)教学目标一、知识与技能1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的探究方法.二、过程与方法1.用三边的数量关系来判断一个三角形是否为直角三角形,培养学生数形结合的思想.2.通过对Rt△判别条件的研究,培养学生大胆
3、猜想,勇于探索的创新精神.三、情感态度与价值观1.通过介绍有关历史资料,激发学生解决问题的愿望.2.通过对勾股定理逆定理的探究;培养学生学习数学的兴趣和创新精神.教学重点探究勾股定理的逆定理,理解互逆命题,原命题、逆命题的有关概念及关系.教学难点归纳、猜想出命题2的结论.教具准备多媒体课件.教学过程一、创设问属情境,引入新课活动1(1)总结直角三角形有哪些性质.(2)一个三角形,满足什么条件是直角三角形?设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提
4、高学生发现反思问题的能力.师生行为学生分组讨论,交流总结;教师引导学生回忆.本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”.生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方:(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.师:那么,一个三角形满足什么条件,才能是直角三角形呢?生:有一个内角是90°,那么这个三角形就为直角三角形.生:如果一个三角形,有两个角的和是90°,那么这个三
5、角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?二、讲授新课活动2问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的关系“32+42=52”.那么围成的三角形是
6、直角三角形.画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2,那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法.师生行为让学生在小组内共同合作,协手完成此活动.教师参与此活动,并给学生以提示、启发.在本活动中,教师应重点关注学生:①能否积极动手参与
7、.②能否从操作活动中,用数学语言归纳、猜想出结论.③学生是否有克服困难的勇气.生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52.我们围成的三角形是直角三角形.生:如果三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42
8、+7.52=8.52.是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?活动3下面的三组数分别是一个三角形的三边长a,b,c5,12,13;7,24,25;8,15,17.(1)这三组效都满足a2+b2=c2吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?设计意图:本活动通过让学生按已知数据作出三角形,并测量三角形三个内角的度数来进一步获得一个三角形是直角三角形的有关边的条件.师生行为:学生进一步以小组为单
此文档下载收益归作者所有