行列式的计算方法

行列式的计算方法

ID:6338308

大小:512.00 KB

页数:15页

时间:2018-01-10

行列式的计算方法_第1页
行列式的计算方法_第2页
行列式的计算方法_第3页
行列式的计算方法_第4页
行列式的计算方法_第5页
资源描述:

《行列式的计算方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、行列式的计算方法摘要:线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组,行列式的计算是一个重要的问题。本文依据行列式的繁杂程度,以及行列式中字母和数字的特征,给出了计算行列式的几种常用方法:利用行列式的定义直接计算、化为三角形法、降阶法、镶边法、递推法,并总结了几种较为简便的特殊方法:矩阵法、分离线性因子法、借用“第三者”法、利用范德蒙德行列式法、利用拉普拉斯定理法,而且对这些方法进行了详细的分析,并辅以例题。关键词:行列式矩阵降阶TheMethodsofDeterminantCalculationAbstrac

2、t:Solvingmultiplelinearequationsisthemaincontentofthelinearalgebra,determinantsproducedinsolvinglinearequations,determinantcalculationisanimportantissue.Thisarticleisbasedonthecomplexitydegreeofthedeterminant,andthecharacteristicsoflettersandnumbersofthedeterminant,a

3、ndthengivesseveralcommonlyusedmethodstocalculatethedeterminant:directcalculationusingthedefinitionofdeterminant,intothetriangle,reductionmethod,edgingmethod,recursion,andsummarizesseveralrelativelysimpleandspecificmethods:matrix,linearseparationfactormethod,toborrow"

4、thethirdparty"method,usingVandermondedeterminantmethod,usingLaplacetheorem,alsoanalyzethesemethodsindetail,andsupportedbyexamples.Keywords:determinantmatrixreduction.1.引言线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组,然而它除了用于研究线性方程组、矩阵、特征多项式等代数问题外,还在各种工程领域有着广泛的应用,是一种不可缺少的运算工具,所以说行列

5、式的计算是一个重要的问题。15二阶行列式:⑴三阶行列式:⑵由此可以看出二阶、三阶行列式计算结果的一些规律:⑵中每项都是三个数的乘积,并由行标与列标可以看出,这三个数分别取自行列式的不同行与不同列;⑵式正好有6项,它恰好是1,2,3全排列的个数。每项前面的符号为,其中为的逆序数。这就是比较简单的采用对角线的方法计算行列式。在行列式的定义中,虽然计算结果的每一项是个元素的乘积,但是由于这个元素是取自不同的行与列,所以对于某一确定的行中的个元素譬如来说,每一项都含有其中的一个且只含有其中的一个元素,而级行列式一共有项,计算它就需要做个

6、乘法。当较大时,是一个相当大的数字,直接从定义采用对角线法计算行列式几乎是不可能的事,[1]本文依据行列式元素间的规律和行列式的性质总结了计算行列式几种常用和特殊的方法。2.计算行列式的常用方法2.1利用行列式的定义直接计算根据行列式的定义=,可以利用行列式的定义直接计算低阶稀疏行列式。例1.利用行列式的定义计算阶行列式15=解:根据行列式的定义,行列式展开后等于所有取自不同行不同列的个元素的乘积,通过观察可知的展开式中只有一个非零项,这一项行标排列具有自然顺序排列,对应的列标排列为,其逆序数为,故当行列式的元素中有较多0时,可

7、以利用定义法进行计算,但如果元素中出现较多非0元素时,这种方法就不易求解。2.2利用化为三角形的方法计算利用行列式的性质把行列式通过一系列的变换转化成位于主对角线一侧的元素全为零的行列式,这样得到的行列式的值就等于主对角线上所有元素的乘积。而对于非零元素位于次对角线的情形,行列式的值等于与次对角线上所有元素的乘积。例2利用上三角形法计算阶行列式解:15在例2中,行列式的每一行对应元素中包含有相同的元素,这样使用化三角形法较为简便,但当行列式的元素不相同且无规律时,计算量就会增加不少,此时这种方法并不简单。2.3利用降阶法计算行列

8、式在计算行列式的时候可以根据行列式元素间的规律,依据行列式的性质或行列式按行(列)展开定理,将一个阶行列式化为个阶行列式来计算。若再继续使用按行(列)展开法,可以将阶行列式降阶然后一直化为多个2阶行列式来计算。例3.利用降阶法计算阶行列式解:依据行列式按行(列)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。