欢迎来到天天文库
浏览记录
ID:6325222
大小:52.50 KB
页数:3页
时间:2018-01-10
《2015年高中数学 3.4.2函数模型及其应用(3)教案 苏教版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.4.2 函数模型及其应用(3)教学目标:1.学会通过数据拟合建立恰当的函数某型,并利用所得函数模型解释有关现象或对有关发展趋势进行预测;2.通过实例了解数据拟合的方法,进一步体会函数模型的广泛应用;3.进一步培养学生数学地分析问题、探索问题、解决问题的能力.教学重点:了解数据的拟合,感悟函数的应用.教学难点:通过数据拟合建立恰当函数模型.教学方法:讲授法,尝试法.教学过程:一、情境问题某工厂第一季度某产品月产量分别为1万件、1.2万件、1.3万件.为了估测以后每个月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量y与月份x的关系.模拟函数可以选用二次函
2、数或函数y=abx+c(其中a,b,c为常数).已知4月份的产量为1.36万件,问:用以上哪个函数作为模拟函数好?为什么?二、学生活动完成上述问题,并阅读课本第85页至第88页的内容,了解数据拟合的过程与方法.三、数学建构1.数据的拟合:数据拟合就是研究变量之间的关系,并给出近似的数学表达式的一种方式.2.在处理数据拟合(预测或控制)问题时,通常需要以下几个步骤:(1)根据原始数据,在屏幕直角坐标系中绘出散点图;(2)通过观察散点图,画出“最贴近”的曲线,即拟合曲线;(3)根据所学知识,设出拟合曲线的函数解析式——直线型选一次函数y=kx+b;对称型选二次函数y=ax
3、2+bx+c;单调型选指数型函数y=abx+c或反比例型函数y=+b.(4)利用此函数解析式,根据条件对所给的问题进行预测和控制.四、数学应用例1 物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度为T0,经过一定时间t后的温度是T,则T-Ta=(T0-Ta),(0.5)t/h其中Ta表示环境温度,h称为半衰期.现有一杯用880C热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降到40℃需要20min,那么降到35℃时,需要多长时间(结果精确到0.1).例2 在经济学中,函数f(x)的边际函数Mf(x)的定义为Mf(x)=f(x+1)-f(x),某公司每月
4、最多生长100台报警系统装置,生产x台(xÎN*)的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润是收入与成本之差.(1)求利润函数P(x)及边际利润函数MP(x);(2)利润函数P(x)与边际利润函数MP(x)是否有相同的最大值?例3 (见情境问题)02040608010012014016080100120140160练习总次数打完18洞的杆数五、巩固练习1.一流的职业高尔夫选手约70杆即可打完十八洞,而初学者约160杆.初学者打高尔夫球,通常是开始时进步较快,但进步到某个程度后就不易再出现大幅进步.
5、某球员从入门学起,他练习打高尔夫球的成绩记录如图所示:根据图中各点,请你从下列函数中:(1)y=ax2+bx+c;(2)y=k·ax+b;(3)y=;判断哪一种函数模型最能反映这位球员练习的进展情况?2.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本y(单位:元/100kg)与上市时间t(单位:天)的数据如下表:时间/t50110250种植成本/y150108150(1)根据上表数据,从下列函数中选取一个描述西红柿的种植成本y与上市时间t的变化关系;y=at+b,y=at2+bt+c,y=abt,y=alogbt(2)利用你选取的函数,求西红柿种植成
6、本最低时的上市时间及最低种植成本.简答:(1)由提供的数据描述西红柿的种植成本y与上市时间t之间的变化关系不可能是常函数,因此用y=at+b,y=abt,y=alogbt中的任一个描述时都应有a不等于0,此时这三个函数均为单调函数,这与表中所给数据不符合,所以,选取二次函数y=at2+bt+c进行描述.(2)略.六、要点归纳与方法小结处理数据拟合(预测或控制)问题时的解题步骤.七、作业课本P104习题3.4(2)-4.新课标第一网系列资料www.xkb1.com
此文档下载收益归作者所有