欢迎来到天天文库
浏览记录
ID:6301665
大小:219.30 KB
页数:6页
时间:2018-01-09
《应用时间序列分析课程论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、应用时间序列分析课程论文一时间序列模型简介总结时间序列模型可以大致分为自回归过程模型和移动平均过程模型两大类。前者以其滞后变量为依据,推算其未来值,后者是以过去的误差项为依据,推算其未来值。有时需两者并用,便产生自回归移动平均模型。自回归模型(AR)在AR模型中,序列的当前值由序列的当前值和序列的前一个长度为M的窗口内序列值决定。自回归过程是一个变量在时间的某一点的变化,相对于前期的变化是线性的。一般来说相关性随着时间呈指数下降,且在比较短的周期内消失。移动平均模型(MA)这个式子说明序列的当前值由序列从当前值前推长度为N的窗口内序列值决定。在平均移动模型(M
2、A)中,时间序列是一种未观测到的时间序列的平均移动的结果,如下:e为一个独立同分布的随即变量,c为常数,且c≤1。在平均移动参数c上的限制保证了过程是可以转换的。表明未来事件不太可能影响现在的事件,而且此过程是稳定的;对于e的限制,如同AR过程中的e,是一个具有零均值和方差为r的独立同分布随机变量。已观测到的时间序列C是未来观测到随机时间序列平均移动的结果。由于平均移动过程,所有过去和短期记忆的结果存在一个线性的依赖。自回归-移动平均模型(ARMA)ARMA由AR和MA两个部分组成,形式如下:在ARMA模型中,序列的当前值由序列的当前值从当前值前推长度为N的窗
3、口内序列值以及序列的前一个长度为M的窗口内序列值一起决定。在自回归-移动平均模型中,既存在自回归项,又有平均移动项:此模型属于混合模型,称为ARMA(p,q)。p为自回归项的个数,q为平均移动项的个数。对于一个ARMA(2,0)过程,和AR(2)一样,而一个ARMA(0,2)过程又和MA(2)一样,但是ARMA还是一个无记忆的过程。齐次非平稳模型(ARIMA)AR和ARMA两个模型合并为一个更一般的过程,即齐次非平稳模型,也称为自回归集中移动平均模型。ARIMA模型专门用于不稳定的时间序列,这些不稳定的过程在它们的均值和方差里,有一个不稳定的倾向,但是由于采用
4、数据的累次差分,所以其结果是平稳的。例如,因为有了长期增长因素,价格序列就是不稳定的了,它可以任意无边界的增长,以至于使价格自身不再倾向平均值。但是有效市场假说能接受的是价格或者收入的变化是稳定的。而且,一般价格的变化是用百分比表示的。在这种情况下,可以用对数差分表示,这是一阶差分的情况,在一些序列里,高阶差分可以让数据稳定。假定是一个ARMA(p,q)过程,那么被认为是(p,d,q)阶的整合ARIMA,其中,p是自回归项的个数,q是平均移动项的个数,d是所需差分化运算的次数。如果是一个ARIMA(p,d,0)过程,那么是一个AR(p)过程,同样,如果是一个A
5、RIMA(0,d,q)过程,则是一个MA(0,q)。典型的ARIMA(p,d,q)模型考虑整数差分。二实际运用举例在这里仅对ARMA模型进行一个简单的实际运用。现拟对中国的全体居民消费指数作预测分析,数据选取中国1978-2010全体居民的消费指数的年度数据(见表一),并以此为依据建立预测模型。中国全体居民消费指数(1978-2010)年份全体居民消费指数年份全体居民消费指数年份全体居民消费指数1978104.1198999.82000108.61979106.91990103.72001106.119801091991108.620021071981108.
6、31992113.32003107.11982106.81993108.42004108.11983108.11994104.62005107.719841121995107.82006109.61985113.51996109.42007110.71986104.71997104.52008108.719871061998105.92009109.21988107.81999108.32010106.1表一(数据取自中国统计年鉴)1)趋势分析在选择模型之前,首先对中国消费指数的时序图进行简单的趋势分析,然后再选择合适的模型进行定量分析,在该模型中以x表示全体
7、居民的消费指数。图一(模型x的时序图)该图形表明,中国全体居民的消费指数呈现出轻微的波动性,基本上在100到114之间轻微的波动消费较平稳。从2000年开始缓慢上升,说明居民消这与中国较好较快的经济发展水平有关。从图中可以可能具有平稳性。所以需要进一步分析。了进一步确定数据的平稳性,我们进行单位根检验,得到如下图形图二(关于x的单位根检验)由图可知,检验t统计量值是-3.6616,小于显著性水平为1%的临界值,结果与定性分析一致,即中国全体居民消费指数呈现趋势性也就是平稳性。2)模型识别为了使模型更加精确,我们对x进行一阶差分,并得到它的自相关和偏自相关系数图
8、(见图三)图三(x一阶差分后的自相关和
此文档下载收益归作者所有