欢迎来到天天文库
浏览记录
ID:62554462
大小:106.42 KB
页数:4页
时间:2021-05-12
《高一数学指数函数1教案新人教A版.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:2.6.1指数函数1教学目的:1.理解指数函数的概念,并能正确作出其图象,掌握指数函数的性质.2.培养学生实际应用函数的能力教学重点:指数函数的图象、性质教学难点:指数函数的图象性质与底数a的关系.授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教材分析:指数函数是基本初等函数之一,应用非常广泛它是在本章学习完函数概念和两个基本性质之后较为系统地研究的第一个初等函数前面已将指数概念扩充到了有理指数幂,并给出了有理指数幂的运算性质指数函数的概念从实际问题引入,这样既说明指数函数的概念来源于客观实际,也便
2、于学生接受和培养学生用数学的意识函数图象是研究函数性质的直观图形指数函数的性质是利用图象总结出来的,这样便于学生记忆其性质和研究变化规律本节安排的图象的平行移动的例题,一是为了与初中讲二次函数图象的变化相呼应,二是为以后各章学习函数或向量的平移做些准备教学过程:一、复习引入:引例1(P57):某种细胞分裂时,由1个分裂成2个,2个分裂成4个,⋯⋯.1个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系是什么?分裂次数:1,2,3,4,⋯,x细胞个数:2,4,8,16,⋯,yx2y.由上面的对应关系可知,函数关系是
3、年,x:某种商品的价格从今年起每年降低15%,设原来的价格为1引例2x850.y的函数关系式为与自变量,底数是一个大于中指数在x.x,则后的价格为yyx2yx85.y0的,10且不等于是常量的常量的10我们把这种自变量在指数位置上而底数是一个大于且不等于.函数叫做指数函数二、新授内容:.指数函数的定义:1.是自变量,函数定义域x指数函数,其中叫做函数R是1a>0,:为什么要规x)1aa0且ya(定且a呢?探究1.xxaa10时,a=0,则当x>0时,无意义=0;当x①若xx)2(a,如x=,这时对
4、于②若a<0,则对于x的某些数值,可使.无意义41,⋯等等,在实数范围内函数值不存在.x=2xa.=1R,③若a=1,则对于任何x,是一个常量,没有研究的必要性,对于任何xRa>0且a1在规定以后,为了避免上述各种情况,所以规定xxaa>0.因此指数函数的定义域是R,值域是都有意义,且(0,+∞).x32y是指数函数吗?探究2:函数xxaa1.指数函数的解析式y=的系数是中,xa;1,y=有些函数貌似指数函数,实际上却不是,如k+k(a>0且aZ)xa1)a有些函数看起来不像指数函数,实际上却是,如y=,因为(a>
5、0,且x11121,且,其中它可以化为y=>0a指数函数的图象和性质:2.11xx10的aaxx图象y=,y=y=在同一坐标系中分别作出函数.,y=,210列表如下:⋯-3-2-1-0.500.5123⋯xx2y=⋯0.130.250.50.7111.4248⋯x18421.410.710.50.250.13y=2.⋯⋯x⋯-1.5-1-0.5-0.2500.250.511.5⋯x10y=⋯0.030.10.320.5611.783.161031.62⋯x1⋯31.62103.161.7810.560.320.10
6、.03⋯y=10xx11xx102的图象特征,就可以得到,y=,我们观察y=y=,y=102x(a0且aya1)的图象和性质a>107、可列表、x表示成经过年数y分析:通过恰当假设,将剩留量描点、作图,进而求得所求解:设这种物质量初的质量是1,经过x年,剩留量是y经过1年,剩留量y=1×84%=0.841;3.584%=0.842;×2年,剩留量y=1经过13⋯⋯2.52一般地,经过x年,剩留量0.51.5x1y=0.840.5根据这个函数关系式可以列表如下:01234451325.5-02.22.2x=0.9fx221.81.8x1.7xf1.61.61.41.41.21.2110.80.80.60.60.40.40.20.2-0.50.511.8、522.533.542.52.50.511.5-0-2-1.2-0.2-0.4-0.4-0=-1.5x0123456y10.840.710.590.500.420.35用描点法画出指数函数y=0.84x的图象从图上看出y=0.5只需x≈4.答:约经过4年,剩留量是原来的一半评述:指数函数图象的应用;数形结合思想的体现例2(课本第81页)比较下列各题中两个值
7、可列表、x表示成经过年数y分析:通过恰当假设,将剩留量描点、作图,进而求得所求解:设这种物质量初的质量是1,经过x年,剩留量是y经过1年,剩留量y=1×84%=0.841;3.584%=0.842;×2年,剩留量y=1经过13⋯⋯2.52一般地,经过x年,剩留量0.51.5x1y=0.840.5根据这个函数关系式可以列表如下:01234451325.5-02.22.2x=0.9fx221.81.8x1.7xf1.61.61.41.41.21.2110.80.80.60.60.40.40.20.2-0.50.511.
8、522.533.542.52.50.511.5-0-2-1.2-0.2-0.4-0.4-0=-1.5x0123456y10.840.710.590.500.420.35用描点法画出指数函数y=0.84x的图象从图上看出y=0.5只需x≈4.答:约经过4年,剩留量是原来的一半评述:指数函数图象的应用;数形结合思想的体现例2(课本第81页)比较下列各题中两个值
此文档下载收益归作者所有