欢迎来到天天文库
浏览记录
ID:6246663
大小:27.50 KB
页数:6页
时间:2018-01-07
《探究数学之美 推进素质教育》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、探究数学之美推进素质教育 一、探究数学之美的目标和内容1、数学美的表现。数学美的表现形式是多种多样的,从数学内容看,有概念之美、公式之美、体系之美等;从数学的方法及思维看,有简约之美、类比之美、抽象之美、无限之美等;从狭义美学意义上看,有对称之美、和谐之美、奇异之美等。经通过对数学美表现的研究,我们可以肯定的回答,数学中含有美的因素,数学发展受美育思想的影响,在此,可以借助古代哲学家、数学家普洛克拉斯断言:“哪里有数,哪里就有美。”2、数学美的功能:审美教育的范围正日益广泛地渗透到人类社会的各个领域之
2、中。人们不仅通过音乐,艺术,而且通过自然美、社会美、科学美,得到美的熏陶,美化精神的境界。美育,对使学生树立正确的审美观,提高学生的审美能力和审美创造能力,塑造学生完善的人格,促进学生的全面发展,有着非常重要和积极的作用。数学美的功能,主要体现在下面几个方面:(1)数学美能够培养人们创造、发明数学的激情。(2)数学美能启发人们探求真理的思路。(3)数学美感有检验真理的作用。6(4)寓美于教,能激发学生的学习兴趣。(5)数学美感能达到以美启智,提高学生解决问题的能力。3、数学美之教育途径。在科学美层次上,
3、提高学生的科学素养。科学和艺术一样,都有自己的美学特征,起着陶冶情操,完善思维品质的作用。其中包括:科学发现中的美学感悟,探索科学规律获得的愉悦,科学思维方法的美妙等诸多方面。科学美的发掘,可以通过种种渠道进行,包括视觉上的美,情理之中意料之外的“惊讶美”,证明技巧运用中的“机智美”,解决生活实际问题时的“实用美”,撰写小论文时的感受到的“创造美”。在中学数学教学过程中,我们可以从中学数学教材内容的美,如概念之美、证明之美、体系之美、无限之美、平衡之美等方面加以探讨,带领学生进入数学美的乐园,陶冶精神情
4、操,激发他们的学兴趣,提高学生的审美能力,培养创造性思维能力。提高学生的审美能力,教师应当作为必要的审美示范,引导学生感知,欣赏数学美。另一方面,“从实践中来,到实践中去”,只有将美知识应用于实践,审能教育才有意义,学生的审美能力才能得到进一步提高,因此,数学美之教育途径主要有二:一是展示美,二是应用美。其具体探究途径如下:1.展示隐含的美62.挖掘数学美3.创造数学美4.将美学原理应用于解题实践二、探究数学之美1、数学美。提到数学,很多人都会觉得它非常的枯燥和乏味,并且理解和掌握起来十分困难。打个简单
5、的比喻,站在花园里面的人会说花园非常的漂亮,可是站在花园外面的人,因为没有进去就会说它不漂亮。如果还没有真正地走进数学,了解和掌握数学美,又怎么会学好数学呢?这就像吃葡萄的人说葡萄酸,不吃葡萄的人说葡萄不酸,是一样的道理。所以,并不是数学中没有美,而是曲高和寡,极少有人能走进数学了解和掌握数学的美。2、数学美的主要特征以及应用。数学美的主要特征可以简单概括为统一性、简洁性、对称性和奇异性等。由于大学高等数学中含有很多抽象化、形象化的概念和理论,这就需要学生充分地认识数学美。如果学生不能掌握数学美,是很难
6、对其内容有深刻的理解。而且,在具体的解题过程中掌握好数学美也可以很好地掌握解题原理。减少解题的难度。因而,数学美对于大学生而言,不仅仅是一种理论,它可以帮助其找到正确的解题方法以及得到正确的结论。3、统一性。数学知识体系作为人类的一种认识成果,是对其内容做了系统地组织和划分,组成了6数学知识结构。希尔伯特曾经说过,“数学科学是一个必可分割的有机整体,它的生命力正是各个部分之间的联系,而数学的有机统一,也正是这门学科固有的特点。”因而,数学的统一性具体体现在各分支之间、分支内部以及分支与整体之间的互相贯通
7、、和谐协调与相互转化上。具体体现在解题上就是利用各个条件,条件内部以及条件与结论之间的关联,探索出具体的解题方法。这是一种从差异中看到统一,在整体上找到数学题内在的联系与规律的解题方式,是合理解决数学问题的有效途径。4、简洁性。数学学科作为一门科学有其独特的表现形式,如何合理地应用数学的表达形式(数学符号和数学公式)来表达数学内容,是数学家们追求的一种非常重要的数学美,选就是简洁美。符号和公式是数学学科独有的语言表达形式。如何在解题的过程中简单、巧妙地应用数学语言,把它的解题步骤最简洁地体现出来,是每个
8、数学家以及数学爱好者最关心的问题。简捷的解题方法和明快的思维令人心旷神怡,使人的心情无限的愉悦,体会到数学真正的美。65、对称性。对称性在数学中是非常显而易见的一种美,具有极其重要的作用。无论是在解题过程中。还是探索数学结论时,对称性都会给人很多启发。对称性,一般只是指外观或者表面的对称,而数学中的对称性却是用变换、运动的不变性来本质地反映这个含义。因此才说数学美是理性、高层次的形式美。例如圆形被认为是最美的图形,原因就是它具有对称性。波纹
此文档下载收益归作者所有