资源描述:
《 分析在钢铁冶炼设备中的故障诊断.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、分析在钢铁冶炼设备中的故障诊断 1故障诊断技术的发展[1] 故障诊断(FD)始于(机械)设备故障诊断,其全名是状态监测与故障诊断(CMFD)。它包含两方面内容:一是对设备的运行状态进行监测;二是在发现异常情况后对设备的故障进行分析、诊断。故障诊断技术是一门交叉学科,融合了现代控制理论、信号处理、模式识别、最优化方法、决策论、人工智能等,为解决复杂系统的故障诊断问题提供了强有力的理论基础,同时实现了故障诊断技术的实用化;近二十年来,由于技术进步与市场需求的双重驱动,故障诊断技术得到了快速发展,已在航空航天、核反应堆、电厂、钢铁、
2、化工等行业得到了成功应用,取得了显著的经济效益;从故障诊断技术诞生起,国际自动控制界就给予了高度重视。 以运动机械的振动检测为中心,辅助以温度、压力、位移、转速和电流等各种参数的采集,从而对钢铁冶炼中的各种大型传动设备的状态进行分析和判断,从而达到故障诊断的目的。 2故障诊断的主要理论和方法[2-3] 1971年Beard发表的博士论文以及Mehra和Peschon发表的论文标志着故障诊断这门交叉学科的诞生。发展至今已有30多年的发展历史,但作为一门综合性新学科——故障诊断学——还是近些年发展起来的。从不同的角度出发有
3、多种故障诊断分类方法,这些方法各有特点,但从学科整体可归纳以下几类方法。 1)基于系统数学模型的诊断方法:该方法以系统的数学模型为基础,以现代控制理论和现代优化方法为指导,利用Luenberger观测器、等价空间方程、Kalman滤波器、参数模型估计与辨识等方法产生残差,然后基于某种准则或阀值对残差进行分析与评价,实现故障诊断。该方法要求与控制系统紧急结合,是实现监控、容错控制、系统修复与重构等的前提、得到了高度重视,但是这种方法过于依赖系统数学模型的精确性,对于非线性高耦合等难以建立数学模型的系统,实现起来较困难。如状态估计诊断
4、法、参数估计诊断法、一致性检查诊断法等。 2)基于系统输入输出信号处理的诊断方法:通过某种信息处理和特征提取方法来进行故障诊断,应用较多的有各种谱分析方法、时间序列特征提取方法、自适应信号处理方法等。这种方法不需要对象的准备模型,因此适应性强。这类诊断方法有基于小波变换的诊断方法、基于输出信号处理的诊断方法、基于时间序列特征提取的诊断方法。基于信息融合的诊断方法等。 3)基于人工智能的诊断方法:基于建模处理和信号处理的诊断技术正发展为基于知识处理的智能诊断技术。人工智能最为控制领域最前沿的学科,在故障诊断中已得到成功的应用。
5、对于那些没有精确数学模型或者很难建立数学模型的复杂大系统,人工智能的方法有其与生俱来的优势。基于专家系统的智能诊断技术、基于神经网络的智能诊断技术与基于模糊逻辑的诊断方法已成为解决复杂大系统故障诊断的首选方法,有很高的研究价值和应用前景。这类智能诊断方法有基于专家系统的智能诊断技术、基于神经网络的智能诊断技术、基于模糊逻辑的诊断方法、基于故障树分析的诊断方法等。 4)其它诊断方法:其它诊断方法有模式识别诊断方法、定性模型诊断方法以及基于灰色系统理论的诊断方法等。另外还包括前述方法之间互相耦合、互补不足而形成的一些混合诊断方法。
6、 3钢铁行业中故障诊断技术的应用[4-6] 钢铁行业中的主要机械设备是各种传动设备和液压设备,如轧机、传送带、各种风机等。它们的工作状况决定了生产效率和钢铁冶炼的质量,对这些设备状态的在线检测,能够及时、准确的检测出生产设备的运行状况,并给出相应的操作和建议。因此建立相应的故障诊断系统对整个系统的正常运行特别重要。于是针对钢铁行业特殊的机械环境(多传动设备和液压设备),相应的故障诊断系统也必须以这些设备的特点而建立。主要原理是以运动机械的振动参量检测为中心,辅助以温度、压力、位移、转速和电流等各种参数的采集,从而对这些大型传动设
7、备的状态进行分析和判断,再进行相应的处理。整套故障诊断系统由计算机系统、数据采集单元、检测元件、数据通讯单元以及专业开发软件组成。此系统既可单独工作,又可和DCS或PLC组成分散式故障诊断系统对所遇生产设备进行监控和故障诊断。整个系统的工作流程图如图1所示。 内容仅供参考