导数练习题(含答案)讲解学习.doc

导数练习题(含答案)讲解学习.doc

ID:62378556

大小:305.50 KB

页数:10页

时间:2021-04-30

导数练习题(含答案)讲解学习.doc_第1页
导数练习题(含答案)讲解学习.doc_第2页
导数练习题(含答案)讲解学习.doc_第3页
导数练习题(含答案)讲解学习.doc_第4页
导数练习题(含答案)讲解学习.doc_第5页
资源描述:

《导数练习题(含答案)讲解学习.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、导数练习题(含答案)__________________________________________________导数练习题1.已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,在x=0处的切线与直线3x+y=0平行.(1)求f(x)的解析式;(2)已知点A(2,m),求过点A的曲线y=f(x)的切线条数.解 (1)f′(x)=3ax2+2bx+c,由题意可得解得所以f(x)=x3-3x.(2)设切点为(t,t3-3t),由(1)知f′(x)=3x2-3,所以切线斜率k=3t2-3,切线方程为y-(t3-3

2、t)=(3t2-3)(x-t).又切线过点A(2,m),代入得m-(t3-3t)=(3t2-3)(2-t),解得m=-2t3+6t2-6.设g(t)=-2t3+6t2-6,令g′(t)=0,即-6t2+12t=0,解得t=0或t=2.当t变化时,g′(t)与g(t)的变化情况如下表:t(-∞,0)0(0,2)2(2,+∞)g′(t)-0+0-g(t)极小值极大值所以g(t)的极小值为g(0)=-6,极大值为g(2)=2.____________________________________________________

3、________________________________________________作出函数草图(图略),由图可知:①当m>2或m<-6时,方程m=-2t3+6t2-6只有一解,即过点A只有一条切线;②当m=2或m=-6时,方程m=-2t3+6t2-6恰有两解,即过点A有两条切线;③当-6

4、,],x∈(1,e2]都成立,求实数m的取值范围.解 (1)由题意知,f(x)=2lnx-x2,f′(x)=-x=,当≤x≤e时,令f′(x)>0得≤x<;令f′(x)<0,得

5、________________________都成立,则alnx≥m+x对所有的a∈[0,],x∈(1,e2]都成立,即m≤alnx-x,对所有的a∈[0,],x∈(1,e2]都成立,令h(a)=alnx-x,则h(a)为一次函数,m≤h(a)min.∵x∈(1,e2],∴lnx>0,∴h(a)在[0,]上单调递增,∴h(a)min=h(0)=-x,∴m≤-x对所有的x∈(1,e2]都成立.∵1

6、1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(1)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N*,求gn(x)的表达式;(2)若f(x)≥ag(x)恒成立,求实数a的取值范围;(3)设n∈N*,比较g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.解 由题设得,g(x)=(x≥0).(1)由已知,g1(x)=,g2(x)=g(g1(x))==__________________________________________________________

7、__________________________________________,g3(x)=,…,可得gn(x)=.下面用数学归纳法证明.①当n=1时,g1(x)=,结论成立.②假设n=k时结论成立,即gk(x)=.那么,当n=k+1时,gk+1(x)=g(gk(x))===,即结论成立.由①②可知,结论对n∈N*成立.(2)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)-(x≥0),则φ′(x)=-=,当a≤1时,φ′(x)≥0(当且仅当x=0,a=1时等号成立),∴φ(x)在

8、[0,+∞)上单调递增.又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立,∴a≤1时,ln(1+x)≥恒成立(当且仅当x=0,a=1时等号成立).当a>1时,对x∈(0,a-1]有φ′(x)≤0,∴φ(x)在(0,a__________________________________________

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。