差分法欧拉格式浅谈.doc

差分法欧拉格式浅谈.doc

ID:62166169

大小:180.50 KB

页数:5页

时间:2021-04-20

差分法欧拉格式浅谈.doc_第1页
差分法欧拉格式浅谈.doc_第2页
差分法欧拉格式浅谈.doc_第3页
差分法欧拉格式浅谈.doc_第4页
差分法欧拉格式浅谈.doc_第5页
资源描述:

《差分法欧拉格式浅谈.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、差分法欧拉格式浅谈科学计算中常常求解常微分方程的定解这类问题的最简形式是一阶方程的初值问题(1)这里假定右函数适当光滑,譬如关于y满足Lipschitz条件,以保证上述初值问题的解y(x)存在且唯一。虽然求解常微分方程有各种各样的解析方法,但解析方法只能用来求解一些特殊类型的方程。求解从实际问题当中归结出来的微分方程主要靠数值解法.差分方法是一类重要的数值解法。这类方法回避解y(x)的函数表达式,而是寻求它在一系列离散节点上的近似值.相邻的两个节点的间距称作步长。假定步长为定数。差分方法是一类离散化方法,这类方法将寻求解y(x)的分析问题转化为计算离散值的代数问题,从而

2、使问题获得了实质性的简化。然而随之带来的困难是,由于数据量往往很大,差分方法所归结出的可能是个大规模的代数方程组。初值问题的各种差分方法有个基本特点,它们都采取“步进式”,即求解过程顺着节点排列的次序一步一步地向前推进。描述这类算法,只要给出从已知信息计算的递推公式.这类计算公式称作差分格式。差分格式中仅含一个未知参数,或者说,它是仅含一个变元的代数方程,这就大大地缩短了计算问题的规模。总之,差分方法的设计思想是,将寻求微分方程的解y(x)的分析问题化归为计算离散值的代数问题,而“步进式”则进一步将计算模型化归为仅含一个变元的代数方程--差分格式.Euler方法方程(1

3、)中含有导数项,这是微分方程的本质特征,也正是它难以求解的症结所在.导数是极限过程的结果,而计算过程则总是有限的.因此数值解法的第一步就是消除式(1)中的导数项,这项手续称作离散化。由于差商是是微分的近似计算,实现离散化的一种直截了当的途径是用差商替代导数。Euler格式设在区间的左端点列出方程(1)即并用差商替代其中的导数项,则有近似关系式(2)若用的近似值代入上式右端,并记所得结果为,这样设计出的计算公式(3)就是著名的Euler格式。若初值已知,则依据格式(3)可逐步算出数值解。再从图形上看,假设节点位于积分曲线上,则按Euler格式定出的节点落在积分曲线的切线上

4、,从这个角度也可以看出,Euler格式是很粗糙的。隐式Euler格式再在区间的右端点列出方程(1),即并改用点处的向后差商替代方程中的导数项,再离散化,即可导出隐式Euler格式(5)这一格式与Euler格式(3)有着本质的区别:Euler格式(3)是关于的一个直接的计算公式,称这类格式是显式的;而格式(5)的右端含有未知的它实际上是个关于的函数方程,这类格式是隐式的.隐式格式的计算远比显式格式困难。由于数值微分的向前差商公式与向后差商公式具有同等精度,可以预料,隐式Euler格式(5)与显式Euler格式(3)的精度相当,两者精度都不高。Euler两步格式为了改善精度

5、,可以改用中心差商替代方程中的导数项,再离散化,即可导出下列格式:(6)无论是显式Euler格式(3)还是隐式Euler格式(5),它们都是单步法,其特点是计算时只用到前一步的信息;然而格式(6)除了以外,还显含更前一步的信息,即调用了前面两步的信息,Euler两步格式因此而得名。Euler两步格式(6)虽然比Euler格式或隐式Euler格式具有更高的精度,但它是一种两步法。两步法不能自行启动,实际使用时除初值外还需要借助于某种一步法再提供一个开始值y1,这就增加了计算程序的复杂性。梯形格式设将方程的两端从到求积分,即得(7)显然,为要通过这个积分关系式获得的近似值

6、,只要近似地算出其中的积分项,而选择不同的计算方法计算这个积分项,就会得到不同的差分格式。例如,利用矩形方法计算积分项代入式(7)有近似关系式据此离散化又可导出Euler格式(3).由于数值积分的矩形方法精度很低,Euler格式当然很粗糙。为了提高精度,改用梯形方法计算积分项再代入式(7),有设将式中的,分别用,替代,作为离散化的结果导出下列计算格式:(8)与梯形求积公式相呼应的这一差分格式称作梯形格式.容易看出,梯形格式(8)实际上是显式Euler格式(3)与隐式Euler格式(5)的算术平均。改进的Euler格式Euler格式(3)是一种显式算法,其计算量小,但计算

7、精度低;梯形格式(8)虽然提高了精度,但它是一种隐式算法,需要借助于迭代过程求解,计算量大。可以综合使用这两种方法,先用Euler格式求得一个初步的近似值,称作预报值;预报值的精度不高,用它替代式(8)右端的再直接计算,得到校正值,这样建立的预报校正系统(9)称作改进的Euler格式。这是一种显式格式,它可表达为如下嵌套形式:或平均化形式(10)比较几种Euler格式。Euler格式是显式计算,计算量小,结构简单,但精度低;梯形格式改善了精度,但它是隐式的,求解困难。相比之下改进的Euler格式无论是计算量还是精度都是可取的.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。